SAN FRANCISCO, SAN PABLO AND SUISUN BAYS HARBOR SAFETY PLAN

Voted on and approved by the Harbor Safety Committee of the San Francisco Bay Region June 14, 2012

of the San Francisco Bay Region

Mandated by the California Oil Spill Prevention and Response Act of 1990

Pursuant to the California Oil Spill and Prevention Act of 1990

Submitted by the Harbor Safety Committee of the San Francisco Bay Region c/o Marine Exchange of the San Francisco Bay Region 505 Beach Street, Suite 300 San Francisco, California 94133-1131 Telephone: (415) 441-7988 hsc@sfmx.org

Table of Contents

Introduc	tion	iii
Harbor S	Safety Committee Organization	V
Executiv	ve Summary	vii
I.	Geographic Boundaries	1
II.	General Weather, Currents and Tides	3
III.	Aids to Navigation	16
IV.	Anchorages	17
V.	Surveys, Charts and Dredging	19
VI.	Contingency Routing	23
VII.	Vessel Speed and Traffic Patterns	25
VIII.	Accidents and Near-Accidents	
IX.	Communication	32
X.	Bridges	
XI.	Small Passenger Vessels – Ferries	
XII.	Small Vessels	
XIII.	Vessel Traffic Service	55
XIV.	Tug Escort / Assist for Tank Vessels	60
XV.	Pilotage	66
XVI.	Underkeel Clearance	69
XVII.	Economic and Environmental Impacts	70
XVIII.	Plan Enforcement	73
XIX.	Substandard Vessel Inspection	75
XX.	Recommendations Implemented or Addressed	76
XXI.	Harbor Safety Committee Educational Materials	
Table of	Appendices	ii
Table of	Maps	ii

Table of Appendices

Appendix A:	Best Maritime Practices
Appendix B:	Membership of the Harbor Safety Committee of the San Francisco Bay Region
Appendix C:	Bylaws of the Harbor Safety Committee of the San Francisco Bay Region
Appendix D:	Regulations Governing the Harbor Safety Committee of the San Francisco Bay Region
Appendix E:	Annual Work Group Reports
Appendix F:	Tug Escort Regulations and OSPR Escort Recap150
Appendix G:	Clearing House List of Certified Tug Escort Boats176
Appendix H:	Clearing House Report on Escorted Vessel Movements
Appendix I:	Clearing House List of Tanker Movements and Total Vessel Movements in San Francisco Bay
Appendix J:	Recommendations for Conducting Escort Training On San Francisco Bay195
Appendix K:	Sites of the Physical Oceanographic Real Time System (P.O.R.T.S.) Instruments That Measure Currents, Tides, Meteorological Data And Salinity
Appendix L:	Vehicular Bridge Inventory
Appendix M:	Coast Guard Marine Safety Office Bay Port Safety Statistics 202
Appendix N:	Coast Guard Marine Safety Office Bay Pollution Statistics210
Appendix O:	Waterborne Petroleum Cargo Statistics
Appendix P:	Recommendations to Be Addressed
Table of Ma	ips
Map 1	Geographic Limits of the Harbor Safety Plan
Map 2	Vessel Traffic System San Francisco Service Area225
Map 3	Tug Escort Zones

Introduction

In 1990, the California Legislature enacted the Oil Spill Prevention and Response Act (OSPRA). The goals of OSPRA are to improve the prevention, removal, abatement, response, containment and clean up and mitigation of oil spills in the marine waters of California. The Act (SB 2040) created harbor safety committees for the major harbors of the state of California to plan "for the safe navigation and operation of tankers, barges, and other vessels within each harbor ... [by preparing] ... a harbor safety plan, encompassing all vessel traffic within the harbor." The Harbor Safety Committee of the San Francisco Bay Region was officially sworn in September 18, 1991 and held its first meeting on that date. The original Harbor Safety Plan for San Francisco, San Pablo and Suisun Bays was adopted August 13, 1992. SB 2040 mandates that the Harbor Safety Committee must annually review its previously adopted Harbor Safety Plan and recommendations and submit the annual review to the OSPR Administrator for comment.

The full committee of the Harbor Safety Committee holds regular monthly public meetings. The committee chairperson may appoint work groups to review the mandated components of the Harbor Safety Plan and timely issues. All committee and work group meetings are noticed to the public. Public comments are received throughout discussions of the various issues, which results in full public participation in developing the recommendations of the Harbor Safety Plan of the San Francisco Bay Region.

The San Francisco Bay Harbor Safety Plan encompasses a series of connecting bays, including the San Francisco, San Pablo and Suisun Bays, and the Sacramento River to the Port of Sacramento and the San Joaquin River to the Port of Stockton. The distance from the San Francisco lighted horn buoy outside the Bay to the Ports of Stockton and Sacramento is approximately one hundred miles. The 548-square-mile Bay has an irregular 1,000 mile shoreline composed of a variety of urban and suburban areas, marshes and salt ponds. Several significant islands are within the Bay, including Angel Island, Alcatraz Island, Yerba Buena Island and Treasure Island. Map 1 depicts the geographic boundaries of the area covered by the Harbor Safety Plan.

The San Francisco Bay system is the largest estuary on the Pacific Coasts of North and South America. Waters from the two major river systems and the Bay flow through the Golden Gate, which is less than a mile wide at its narrowest point. Because of the volume of water moving through the narrow opening on a daily basis, tides and strong currents occur in the Bay. While the Bay is extremely deep (356 feet) under the Golden Gate Bridge because of the swiftly moving volume of water, the Bay is very shallow in many areas and subject to sedimentation from the rivers emptying into the Bay. Sediment also is deposited outside the entrance to San Francisco Bay where a semicircular bar extends into the Pacific Ocean. The Bay itself is less than 18 feet deep over two-thirds of its area, and the Bay bottom is predominantly mud. A dredged Main Ship Channel allows deepdraft vessels to navigate the Bay. The Bay presents a number of hazards to navigation, such as strong tides and currents and variable bottom depths, which confine large vessels to defined shipping lanes within the Bay. Navigating the Bay becomes more complex during periods of restricted visibility. The San Francisco Bar Pilots regularly compile recommended guidelines for safe navigation entitled "Port Safety Guidelines for Movement of Vessels on San Francisco Bay and Tributaries." The guidelines are sent to members of the shipping industry, and are based on a general consensus among pilots as to recommended navigation practices.

The Bay supports a variety of uses, including shipping, fishing, ferry transit and various recreational activities. There are seven ports, a number of marine terminals, and military facilities at the Military Ocean Terminal Concord (MOTCO) and Moffet Field. Because the water depths near refineries in Contra Costa and Solano Counties cannot safely accommodate larger oil tankers, large tankers lighter oil to smaller tankers or barges to move cargo in-Bay to marine terminals. Map 3 identifies the location of marine terminals in the plan area. In addition, an expanding ferry system annually makes over 85,000 (2004) trips, mainly to and from San Francisco in the central part of the Bay. Because much of the Bay shoreline is urbanized, recreational boating and the growing sports of board sailing and paddle sports are popular, with an estimated 20,000 boat berths around the Bay, exclusive of the Sacramento and San Joaquin Rivers, as well as numerous boat launch sites.

The shipping industry is a particularly vital part of the Bay Area economy. Shipping spokespersons estimate that approximately 100,000 jobs are dependent upon the shipping industry and that the industry contributes nearly \$5 billion to the regional economy.

Thus, vessel traffic in the Bay consists of a complex variety of inbound and outbound vessels, wholly in-Bay vessel movements, tugs, government vessels, ferries, recreational boats, commercial and sports fishing boats, board sailors, paddle sports enthusiasts and personal watercraft (jet skis) within the series of bays, channels and rivers that comprise the San Francisco Bay planning area.

Organization of the Harbor Safety Committee of the San Francisco Bay Region

The San Francisco Harbor Safety Committee consists of representatives from the following: ports (four), dry cargo vessel operators (two), tank ship operators (two) or one ship operator and one oil marine terminal operator, and one tug operator, one tank barge operator, a passenger ferry or excursion vessel operator, the regional pilot organization, a vessel labor union, a commercial fishing representative, a recreational boater, an environmental organization, the U.S. Coast Guard Captain of the Port, the U.S. Army Corps of Engineers, the National Oceanic and Atmospheric Administration and the San Francisco Bay Conservation and Development Commission. A complete list of committee members is found in Appendix B.

Chair	Captain Lynn Korwatch Marine Exchange of the San Francisco Bay Region 505 Beach Street, Suite 300 San Francisco, California 94133 Ph: 415.441-5045 Fax: 415. 441-1025 korwatch@sfmx.org
Vice Chair	John Berge Pacific Merchant Shipping Association 250 Montgomery Street, Suite 700 San Francisco, California 94104 Ph: 415.353-0710 Fax: 415.352-0717 jberge@pmsaship.com
Executive Secretary	Captain Lynn Korwatch Marine Exchange of the San Francisco Bay Region 505 Beach Street, Suite 300 San Francisco, California 94133 Ph: 415.441-5045 Fax: 415.441-1025 korwatch@sfmx.org

Tugs.....Jonathan Mendes, Chair General Manager Starlight Marine Services A Harley Marine Services Company 321 A Avenue Alameda. Ca 94501 Ph: 510-769-7700 Fax: 510-868-3416 jmendes@harleymarine.com Navigation.....Bruce Horton, Chair San Francisco Bar Pilots Pier 9. East End San Francisco, California 94111 Ph: 415.362-0941 Fax: 415.982-4721 b.horton@sfbarpilots.com Ferry OperationsPatrick Murphy, Chair Blue & Gold Fleet Pier 41 Marine Terminal San Francisco, California 94133 Ph: 415.705-8200 Fax: 415.705-5429 patrick@blueandgoldfleet.com Prevention through People......Margot Brown, Chair National Boating Federation 3217 Fiji Lane Alameda, California 94501 Ph: 510.523-2098 Fax: 510.523-2098 mjbjhb@aol.com P.O.R.T.S.....Chris Peterson, Chair Port of Oakland 530 Water Street Oakland, California 94607 Phone: (510) 627-1308 Fax: (510) 763-8287 cpeterson@portoakland.com Dredging IssuesEsam Amso, Chair Valero Marketing and Supply Company 3400 E Second Street Benicia, California 94510-1097 Phone: (707) 745-7205 Fax: (707) 745-7206 esam.amso@valero.com

Harbor Safety Committee Work Groups

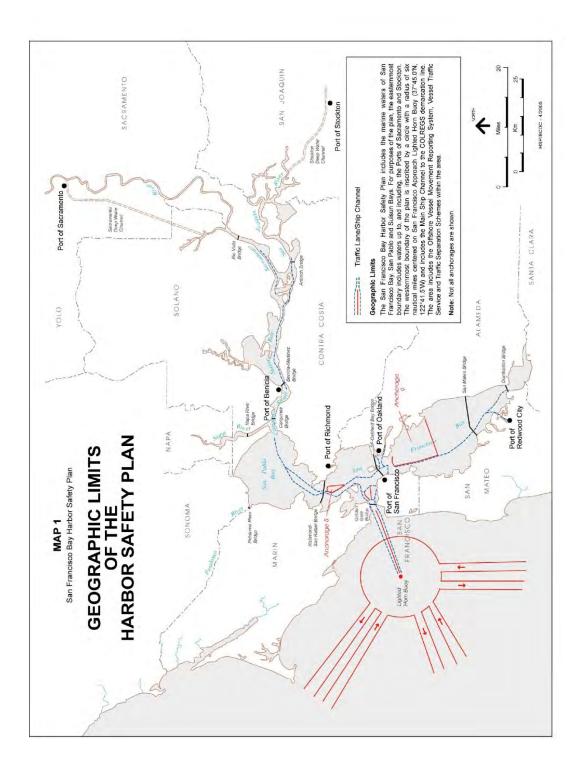
Executive Summary 2011/2012

The Harbor Safety Committee of the San Francisco Bay Region continued to focus on navigational safety and environmental issues that impact the Bay and ocean approaches to the Bay, including the increased potential for vessels to lose power when switching to low sulfur fuel. The risk of a collision with one of the Bay's 11 bridges and potential damage to a vessel resulting in the spilling of oil into the Bay are heightened as Loss of Propulsion (LOP) incidents increase. The HSC continued to monitor the number and causes of LOP incidents following the July 2009 implementation of state regulation requiring ocean-going vessels to switch to low sulfur fuel prior to entering within 24 nautical mile of the California coast. Thirty-five percent of the region's LOP incidents January 2009-March 2012 were attributed to the use of low sulfur fuel.

The Vessel Traffic Service (VTS), working with the SF Bar Pilots, developed a berthing scheme in Anchorage 9 in South San Francisco Bay to provide more efficient and organized use of available anchorage space and to leverage AIS technology to manage the anchoring of vessels. The scheme was adopted by the HSC as a Best Maritime Practice (BMP) following a year-long pilot period.

HSC members participated on the USCG task force planning for the America's Cup to design a course that will ensure continued commerce and navigational safety during the races. The America's Cup will hold its triennial race program in Central San Francisco Bay in 2013, with a number of qualifying races by AC34 contenders scheduled over two weeks in 2012.

Also during 2011-2012:


- The Tug Work Group, with its LA/LB counterpart, developed statewide Best Maritime Practices for bunker fuel transfer in San Francisco Bay, which the HSC adopted in November 2011. Additionally, the work group developed a script for a pre-bunkering safety video to be developed for use along the West Coast.
- The Ferry Operations Work Group conducted a V-MAP exercise and made changes to the plan to reflect lessons learned, and worked closely with the Port of San Francisco and AC34 organizers to develop sailing protocols during the 2012/13 events.
- The Prevention Through People Work Group chair served on the USCG committee considering crowd control, restricted areas, etc., in connection with America's Cup competition, and began meeting with interested parties to design accident-prevention materials related to kayaks and paddleboards and continued distribution of small vessel advisory publications.
- The Navigation and Dredge Issues Work Groups worked with the ACOE, USCG and NOAA on channel realignment for Pinole Shoal and the North Ship Channel. The project was completed, with new markers installed. The work groups also worked with USCG and NOS to design a fog sensor pilot program for the Central Bay.

• The PORTS Work Group obtained funding from OSPR for the San Francisco PORTS operations and maintenance through June 2013. The work group continued adding sensors and stations under a Governor's grant issued after the 2007 Cosco Busan incident. The group will continue to work with the USCG regarding a demonstration installation of a visibility sensor in Oakland.

I. Geographic Boundaries

The policies and recommendations contained in the San Francisco Bay Harbor Safety Plan address vessel safety in the marine waters of the San Francisco, San Pablo and Suisun Bays, up to and including the Ports of Sacramento and Stockton, which establish the eastern boundary of the plan area. The western boundary of the plan is inscribed by a circle with a radius of six nautical miles (nm) centered on San Francisco Approach Lighted Horn Buoy SF (37° 45. 0'N., 122° 41.5'W) and includes the Main Ship Channel to the COLREGS demarcation line (see map opposite). This includes the Offshore Vessel Movement Reporting System, Vessel Traffic Service and Traffic Separation schemes within the area. NOAA charts 18649-18663 cover the Harbor Safety Plan Area.

(See map following page.)

II. General Weather, Currents and Tides

The majority of the background information presented here is derived from the National Weather Service and can be viewed in its entirety in the *U.S. Coast Pilot, Pacific Coast,* published by NOAA and available from the following website: http://nauticalcharts.noaa.gov/nsd/cpdownload.htm. The *Coast Pilot* information is augmented with observations from local sources.

Ships traveling into the Bay encounter diverse weather, currents, tides and bottom depths. Because of the often varied and changing set of harbor conditions, mariners must be observant about current conditions to navigate safely.

Weather

Bay Area weather is seasonably variable with three discernible seasons affecting the marine environment. The Bay Area has several climate regimes, or microclimates. Significant differences in temperature, winds, and fog patterns over relatively short distances are due to variations in airmass between land and sea and to the complex terrain of the coastal mountain ranges. Wind direction is generally west to east; however, there is a great deal of variation due to the complex geography.

Because of the many microclimates of the San Francisco Bay Area, mariners who navigate the waters from outside the Golden Gate, through the San Francisco Bay and Delta and into the Central Valley must be aware of how weather conditions can change significantly over short distances and over short periods of time. Mariners must also be aware of the unique weather conditions and weather hazards that are most prevalent during each season.

Winds

Winter. Winter is the season with the most significant seas, both in terms of locally driven wind waves as well as open ocean swells that are generated by long fetches of strong winds over the eastern Pacific. Winter winds from November to February shift frequently and have a wide range of speeds dependent on the procession of offshore high and low pressure systems. Calms occur 15 to 40 percent of the time inside the Bay and 10 to 12 percent outside. Extreme wind conditions of 50 knots gusting to 75 knots have occurred during the winter. The strongest winds tend to come from the Southeast to Southwest ahead of a cold front.

Seas are sometimes large enough to produce breakers across the San Francisco Bar, several miles west of the Golden Gate. These breaking waves in the open ocean present a significant danger to mariners, especially those unfamiliar with the area. Breakers across the bar are most common with a long period westerly swell around the time of maximum ebb current through the Golden Gate.

Spring. Spring is generally the windiest season, with average speeds in the Bay of 6-12 knots, with wind speeds of 17-28 knot winds up to 40 percent of the time. Wind speeds sometimes reach gale force over the coastal waters outside the Golden Gate, and approach gale force locally in northern San Francisco Bay. Wind direction stabilizes as the Pacific High Pressure System becomes the dominant weather influence. Northwesterly winds are generated and reinforced by the sea breeze. Inside the Bay, winds are channeled and vary from Northwest to Southwest.

Strong springtime winds over the coastal waters produce rough and choppy seas with a short period swell. The large long-period swells that are common during the winter months still roll through the coastal waters quite often during the early spring, but taper off considerably by late spring as the storm track across the Pacific becomes less active.

Summer. Summer winds are the most constant and predictable. The winds outside the Golden Gate are normally from Northwest to North and are generated by the strong Pacific High Pressure System. This condition lasts through October until the system weakens and the winter cycle starts again. Winds inside the Bay are local depending on the land contours acting on the onshore flow. One of the few occurrences that will alter this pattern is when a high pressure system settles over Washington and Oregon. When this happens a Northeast flow develops, bringing warm dry air and clearing away the summer fog.

Small craft advisory conditions (20 to 25 knots) occur nearly every day in summer through the central and northern San Francisco Bay and eastward through the Carquinez Strait. Wind speeds sometimes locally reach 30 knots in these areas. Gales are rare in summer, but can occur during an unusually intense onshore push.

During the summer months, seas in the coastal waters are mostly generated from local winds and therefore have a short period and tend to be choppy. Large, long-period swells from the open ocean contribute much less to the overall wave height than during the late fall to early spring time frame.

Safety Considerations in Severe Weather: Large Vessels and Tugs with Tows 1600 Gross Tons or Greater

Extreme wind conditions occasionally require the San Francisco Bar to be closed to vessel traffic. The following best practices apply to large vessels of 1600 gross tons or more and to tows with tugs of 1600 gross tons or more. They are meant to serve as guidelines, and are not meant to relieve the mariner of his or her responsibility to follow applicable rules and regulations addressing prudent seamanship.

Factors to consider when closing the Bar or limiting transits in the Bay. A number of factors must be considered when limiting transits in the Bay or closing the Bar due to severe weather, including sea state, tidal influences, visibility, traffic density, and wind advisories issued by NOAA. The size, class and condition of the vessels being addressed must also be considered. The HSC recommends a tiered approach, applying greater caution as conditions worsen.

Sustained winds exceeding 25 knots in the Bay

- Vessels should closely evaluate whether it is safe to transit in the Bay. Size, class and sail area of the vessel, tidal influences, visibility, and traffic density should all be considered.
- VTS San Francisco will establish regular communications with bridge watches of VTS users in Bay Area anchorages, and more closely monitor swing circles to ensure vessels are not drifting.

Sustained winds exceeding 40 knots in the Bay

• Transits to and from berths are not recommended.

Sustained winds exceeding 40 knots and/or seas exceed 12 ft at the Sea Buoy

• Bar traffic restrictions and closure should be considered. Size and class of the vessel, draft, swell period, tidal influences, visibility, and traffic density should all be considered. Strong ebb tides should be avoided, and a minimum of 10 feet underkeel clearance is recommended.

Procedures for Closing the Bar or Restricting Bar Traffic

• Bar closures are exercised on a situational basis without specifically defined weather or security conditions.

- The most recent San Francisco Bar Pilot over the Bar, inbound or outbound, shall make the recommendation to the dispatcher that the Bar should be considered for closure, or traffic limited to one-way traffic.
- In the event that the station boat is "boarded off," then the station boat captain will make the recommendation to the dispatcher.
- The dispatcher will then notify the Operations Pilot, who will notify the Port Agent.
- The Operations Pilot or Port Agent will then notify the U.S. Coast Guard VTS and Command Duty Officer at the Sector San Francisco Command Center.
- The Captain of the Port will consult with the Operations Pilot or Port Agent prior to closing the bar under Captain of the Port authority. The Coast Guard will then issue a Marine Safety Broadcast communicating the closure or traffic restriction.
- The procedure for lifting traffic restrictions or re-opening the Bar will be the same as that for restricting traffic or closing the Bar.
- Vessels under Federal Pilotage or Public Vessel may petition the Captain of the Port to transit the San Francisco Bar.

Safety Considerations in Severe Weather: Tugs with Tows Less Than 1600 Gross Tons

The winter months from November to February typically bring storm systems to the Bay area that result in high winds and adverse sea conditions. Extreme wind conditions of 50 knots gusting to 75 knots have occurred during the winter, occasionally requiring the San Francisco Bar to be closed to tug and tow traffic.

These best practices are meant to serve as guidelines, and are not meant to relieve the mariner of his or her responsibility to follow applicable rules and regulations addressing prudent seamanship. Furthermore, they are designed to address vessels in the service of routine cargo transport, and are not meant to prohibit tug rescue or salvage operations.

Factors to consider when closing the Bar or limiting transits in the Bay. A number of factors must be considered when limiting transits in the Bay or closing the Bar due to severe weather, including sea state, tidal influences, visibility, traffic density, and wind advisories issued by NOAA. The size and condition of the vessels being addressed must also be considered. The Tug Escort Work Group recommends a tiered approach, applying greater caution as conditions worsen.

Sustained winds exceeding 25 knots in the Bay

• Tugs with tows should closely evaluate whether it is safe to transit in the Bay. Size and sail area of the vessel, tidal influences, visibility, operator skill and traffic density should all be considered. • VTS San Francisco will establish regular communications with bridge watches of VTS users in Bay Area anchorages, and more closely monitor swing circles to ensure vessels are not dragging.

Sustained winds exceeding 40 knots in the Bay

• Transits to and from berths are not recommended, but may be performed following a careful risk management evaluation by the vessel operator and vessel management.

Sustained winds exceeding 40 knots and/or seas exceed 12 ft at the Sea Buoy

• Bar traffic restrictions and closure should be considered for tugs and tows. Size of the vessel, draft, swell period, tidal influences, visibility, and traffic density should all be considered. Strong ebb tides should be avoided, and a minimum of 10 feet underkeel clearance is recommended.

Fog

Fog is a common occurrence in the Bay Area, particularly around the Golden Gate. It is most frequent during the summer, occasional during fall and winter, and infrequent during spring. Although daily and seasonal fog cycles are predictable, long-term fluctuations are not. Fog patterns can differ within the Bay region on the same day because of the unique geography of the Bay, which consists of two mountain ranges and the large expanse of bays and a major river system. Depending on the location, an area may experience high, dense or relatively little fog. The following is a brief summary of fog conditions in the Bay.

Winter. Winter fogs are usually radiation fog or "tule" fog. With the clear skies and light winds of winter, land temperature drops rapidly at night. In low, damp places such as the Delta and Central Valley (where tules and marsh plants grow), an inversion develops over the inland valleys. Widespread radiation fog will then develop if the surface is sufficiently moist (e.g., after soaking rains). Tule fog is notoriously thick and dense.

In the winter months from late November to early March, fog can develop in the Valley overnight. Visibilities often fall to near zero in the Delta, southern Sacramento Valley, and northern San Joaquin Valley, making marine navigation in these areas difficult. Lowest visibilities occur late during the night through mid-morning hours. Visibilities improve by late morning and often the fog layer lifts into a low overcast during the afternoon.

Sometimes, if there is a light offshore flow during a tule fog event, dense fog can drift westward from the Delta through the Carquinez Strait and into San Francisco Bay. Visibilities can drop below 0.5 mile and stay below 0.5 mile for many hours, and in worst cases, several days. In contrast to the summer fog that moves from sea to land at about 14 knots, the winter tule fogs move slowly seaward at about one knot.

Summer. Summer fog is dependent on several routine conditions. The Pacific High becomes well established off the coast and maintains a constant Northwest wind. It also drives the cold California Current south and causes an upwelling of cold water along the coast. Air closest to the surface becomes chilled so that the temperature increases with altitude. This process forms an inversion layer at 500-1500 feet, where the air is warmer at this level than the air below it. Moist, warm ocean air moving toward the coast is cooled first by the California Current, then more by cold coastal water. Condensation occurs and fog will form to the height of the inversion layer. This happens often enough to form a semi-permanent fog bank off the Golden Gate during the summer.

Under normal summer conditions a daily cycle is evident. A sheet of fog forms off the Golden Gate headlands during the morning and becomes more extensive as the day passes. As the temperature in the inland valleys rises, a local low pressure creates a steady onshore wind. By late afternoon, the fog begins to move through the Golden Gate at a speed of about 14 knots on the afternoon sea breeze. Once inside the Bay it is carried by local winds. In general, the northern part of the Bay is the last to be enveloped and the first to clear in the morning. There are times when the flow is strong enough to carry the sea fog as far east as Sacramento and Stockton. If this continues for a number of days, cooler ocean air replaces the warm valley air and causes the sea breeze mechanism to break down. Winds then diminish and the Bay Area clears for a few days; the valley then slowly reheats and the cycle begins anew.

Safety Considerations in Reduced Visibility

Navigating the San Francisco Bay Region during periods of reduced visibility requires mariners to exercise additional caution and vigilance. The Bay region is one of the foggiest harbors in the United States. In-Bay distances are long. There is not a single regional climate, but a series of microclimates with variable fog. During summer, 30 to 40 percent of parts of the Bay may experience foggy conditions. In winter, the fog is generally denser tule fog.

Dense fog is defined by the National Weather Service as fog that reduces visibility to one-half mile or less on the San Francisco Bay or to one mile or less over the coastal waters. Spring and summer fog is not usually dense over the bays and into the Delta and Central Valley. However, fog can often be dense over the coastal waters when the marine layer is shallow (typically less than 1000 feet deep). During shallow marine layer scenarios, the coastal mountains act as a barrier blocking fog and low clouds from moving inland. Even with a shallow marine layer, fog can still advect into the Bay through the Golden Gate. In this situation, dense fog is almost always limited to local sections of the San Francisco Bay, primarily from the Golden Gate to Berkeley.

Large Vessels and Tugs with Tows 1600 Gross Tons or greater. The following guidelines should be used by the mariner when planning, initiating or navigating a transit in the Bay during periods of reduced visibility. These guidelines acknowledge that large vessels are not as maneuverable as smaller vessels and therefore define "Large Vessels" as power driven vessels of 1600 gross tons or more, and tugs with tows of 1600 gross tons or more. Mariners are at all times to comply with the requirement of the International Regulations for Avoiding Collisions at Sea, or COLREGS.

Critical Maneuvering Areas (CMAs). There are areas within the Bay where additional standards of care are required due to the restrictive nature of the channel, proximity of hazards, or the prevalence of adverse currents. Large vessels should not transit through CMAs when <u>visibility is less than 0.5 nautical mile</u>.

Locations within the Bay identified as Critical Maneuvering Areas:

Redwood Creek San Mateo-Hayward Bridge Oakland Bar Channel* Islais Creek Channel Richmond Inner Harbor Richmond-San Rafael Bridge, East Span Union Pacific Bridge New York Slough, up-bound Rio Vista Lift Bridge

*Note: the Oakland Bar Channel is identified due to cross currents and its proximity to the Bay Bridge and Yerba Buena Island.

Vessels docked: Large vessels at a dock within the Bay should not commence a movement if visibility is <u>less than 0.5 nautical mile at the dock</u>.

Vessels proceeding to dock: Large vessels proceeding to a dock should anchor if visibility at the dock is known to be <u>less than 0.5 nautical mile</u>, unless, under all circumstances, proceeding to the dock is the safest option.

Tugs with Tows less than 1600 Gross Tons. These best practices should be used by the mariner when planning, initiating or navigating a transit in the Bay during periods of reduced visibility. They acknowledge that the size of a tug and tow have much to do with their maneuverability, and therefore, are limited to tugs with tows with a displacement of less than 1600GT. Finally, the best practices are meant to serve as guidelines, and are not meant to relieve the mariner of his or her responsibility to follow applicable rules and regulations addressing prudent seamanship including the requirement of the International Regulations for Avoiding Collisions at Sea, or COLREGS.

Critical Maneuvering Areas (CMAs): The areas within the Bay where additional standards of care are required due to the restrictive nature of the channel, proximity of hazards, or the prevalence of adverse currents, are listed above. Tugs with tows less than 1600GT should not transit through CMAs when visibility is less than 0.25 nautical mile. Tugs with tows in petroleum service should not transit through CMAs when visibility is less than 0.5 nautical mile.

Locations within the Bay identified as Critical Maneuvering Areas:

Redwood Creek San Mateo-Hayward Bridge Oakland Bar Channel* Islais Creek Channel Richmond Inner Harbor Richmond-San Rafael Bridge, East Span Union Pacific Bridge New York Slough, up-bound Rio Vista Lift Bridge

*Note: the Oakland Bar Channel is identified due to cross currents and its proximity to the Bay Bridge and Yerba Buena Island.

Vessels docked: Tugs with tows less than 1600GT at a dock within the Bay should not commence a movement if visibility is <u>less than 0.25 nautical mile at the dock</u>. Tugs with tows in <u>petroleum service</u> at a dock within the Bay should not commence a movement if visibility is <u>less than 0.5 nautical mile at the dock</u>.

Vessels proceeding to dock: Tugs with tows less than 1600GT proceeding to a dock should anchor if visibility at the dock is known to be <u>less than 0.25 nautical mile</u>, unless, under all circumstances, proceeding to the dock is the safest option. Tugs with tows in <u>petroleum service</u> proceeding to a dock should anchor if visibility at the dock is known to be <u>less than 0.5 nautical mile</u>, unless, under all circumstances, proceeding to the dock is the safest option.

Vessel pilots or operators should notify VTS upon determination that a scheduled movement will be delayed or cancelled. If underway, they shall make a sailing plan deviation report per VTS regulations. The operator's local knowledge should include an understanding of historic weather patterns during that time of year, current weather reports and checking with reporting stations along the route. This guidance acknowledges that the Bay region is a series of bays and rivers, in-Bay distances are long and there is not a single Bay region climate, but a series of many microclimates with variable fog. The Captain of the Port has the authority to prohibit movement of vessels within all or portions of the Bay during adverse weather conditions.

Because of the large size of the Bay (500 square miles), the longer distances traveled to the various ports, and the diverse weather conditions encountered in the Bay, mariners are dependent on accurate weather forecasting for vessel movements. The National Weather Service broadcasts marine weather information on VHF WX 1,2,3, and 4.

Currents and Tides

Currents

The currents at the entrance to San Francisco Bay are variable and can attain considerable velocity. Immediately outside the Golden Gate bar is a slight current to the North and West known as the Coast Eddy Current. The currents that have the greatest effect on navigation in the Bay and out through the Golden Gate are tidal in nature.

Golden Gate Flood Current. In the Golden Gate the flood or incoming current sets (direction of flow) straight in with a slight tendency to the northern shores and with heavy turbulence at both Lime Point and Fort Point when the flood is strong. This causes an eddy or circular current between Point Lobos and Fort Point.

Golden Gate Ebb Current. The ebb or outgoing current has been known to reach more than 6.5 knots between Lime and Fort Points. It sets from inside the northern part of the Bay toward Fort Point. As with the flood, it causes an eddy between Point Lobos and Fort Point, and a heavy rip and turbulence reach a quarter of a mile south of Point Bonita.

Golden Gate Current Maximums. In the Golden Gate the maximum flood current occurs about an hour-and-a-half before high water, with the maximum ebb occurring about an hour-and-a-half before low water. The average maximums are 3 knots for the flood and 3.5 knots for the ebb.

In-Bay Currents. Inside the Golden Gate the flood sets to the Northeast and causes swirls and eddies. This is most pronounced between the Golden Gate, Angel Island and Alcatraz Island. The current sets through Raccoon Strait (north of Angel Island), taking the most direct path to the upper Bay and the Delta area. The ebb current inside the Golden Gate is felt on the south shore first. The duration of the ebb is somewhat longer than the flood due to the addition of runoff from the Sacramento and San Joaquin Rivers.

Tides

Tides in the San Francisco Bay Area are semi-diurnal in that there are usually two cycles of high and low tides daily, but with inequality of the heights of the two. Occasionally the tidal cycle will become diurnal (only one cycle of tide in a day). As a result, depths in the Bay are based on "mean lower low water" (MLLW), or the average height of the lower of the two daily low tides. The mean range of the tide at the Golden Gate is 4.1 feet, with a diurnal range of 5.8 feet. During the periodic maximum tidal variations the range may reach as much as 9 feet and have lowest low waters 2.4 feet below mean lower low water datum.

Safety Considerations Associated with Current and Tide Conditions. In late 1991, the National Oceanic and Atmospheric Administration (NOAA) stopped publishing the local tidal current charts due to significant errors in predictions that exceeded NOAA standards. Because safe navigation is highly dependent upon accurate tidal and current information, the Physical Oceanographic Real Time System (P.O.R.T.S.) was installed to give near-real time tide and current data updated every six minutes. P.O.R.T.S. is managed by the Marine Exchange of the San Francisco Bay Region (SFMX) with technical assistance from NOAA/NOS. Consistent funding is still to be identified for long term operation of the system in the Bay.

P.O.R.T.S continues to be of great benefit to recreational boaters, commercial shippers, vessel masters and pilots in providing accurate knowledge of winds, currents and other environmental parameters used by the San Francisco maritime community.

Data from the sensors is collected and subject to automatic preliminary quality control at the Data Acquisition System (DAS) located at the SFMX. The data is quality-tested in much greater detail on a 24-hour/7-day per week basis under a program called the Continuous Operating Real Time Monitoring System or CORMS. CORMS employs knowledgeable oceanographers at NOAA's National Ocean Service headquarters in Silver Spring, Maryland, who monitor the data quality and sensor performance using data quality control tests and remote sensor and DAS diagnostics.

Management of P.O.R.T.S., including administration, field maintenance and repair and the DAS, was handed over to the SFMX, located at Lower Fort Mason Center in San Francisco. The P.O.RT.S. Advisory Workgroup is studying various funding options in order to continue operating the system, and has made a recommendation to request general State funding.

Access to P.O.R.T.S. information may be obtained by logging onto the SFMX website at www.sfmx.org or by contacting the automated voice response number: (866) 727-6787.

Marine Weather Services

The National Weather Service (NWS), a part of the National Oceanic and Atmospheric Administration (NOAA), provides marine weather warnings and forecasts to serve all mariners who use the waters for livelihood or recreation. The warning and forecast program is the core of the NWS's responsibility to mariners. Warnings and forecasts help the mariner plan and make decisions protecting life and property. The NWS also provides information through weather statements and outlooks that supplement basic warnings and forecasts. The following are the basic marine warning products the NWS offers:

Small Craft Advisory: Forecast winds of 22 to 33 knots and/or hazardous sea conditions (usually seas greater than 10 feet).

Gale Warning: Forecast winds of 34 to 47 knots.

Storm Warning: Forecast winds of 48 knots or higher.

Dense Fog Advisory: Visibility reduced to one-half mile or less in the bay. Visibility reduced to one mile or less in the coastal waters.

Special Marine Warning: Potentially hazardous over-water events of short duration (two hours or less) such as thunderstorms with strong gusty winds.

Advisories and warnings listed above are headlined in the Coastal Waters Forecast (CWF). In addition to headlining hazardous weather conditions, the CWF includes forecast information on wind speed and direction, waves, swell, and significant weather (including fog, rain or showers, and thunderstorms). Beginning in March 2006, NWS San Francisco Bay Area began issuing a specific forecast for the San Francisco Bar as part of the Coastal Waters Forecast (CWF) product. The bar forecast includes expected sea state conditions for the next two periods (e.g., tonight and tomorrow), times of maximum ebb current through the Golden Gate and across the bar, and expected hazards such as a small craft advisory for hazardous bar conditions and/or breaking waves on the bar. The bar forecast is updated four times a day along with the rest of the CWF.

Marine Warning and Forecast Dissemination

Marine weather observations, forecasts, and warnings are disseminated through a wide variety of methods, including those listed below.

NOAA Weather Radio (NWR): The NWR network provides voice broadcasts of coastal marine forecasts on a continuous cycle. Broadcast coverage extends across the bays and typically offshore about 25 nautical miles. When severe weather threatens, an alarm tone is sent to automatically turn on compatible NWR receivers in the transmitter's coverage area. Transmitters that broadcast in the San Francisco Bay Area include:

Frequency	Call Sign	Location
162.400 MHz	KHB-49	San Francisco (Mt. Pise)
162.500	KDX-54	San Francisco North Bay Marine (Big Rock Ridge)
162.550	KEC-49	San Jose/Monterey (Mt. Umunhum)
162.450	WWF-64	San Jose/Monterey Marine (Mt. Umunhum)
162.425	KZZ-75	East Bay/Delta (Mt. Diablo)

The Internet

- National Weather Service San Francisco Bay Area: weather.gov/sanfrancisco
- NWS San Francisco Bay Area marine forecast web page: www.wrh.noaa.gov/mtr/marine.php
- Point and Click Marine Forecast: The NWS now offers the opportunity to get a sitespecific forecast instead of relying on a zone forecast: www.wrh.noaa.gov/firewx/fwpfm/fwpfm.php?wfo=mtr&interface=marine

By selecting any spot on the interactive map, the web page user will receive a forecast table that will include specific information on winds, waves, swells and other parameters for the next seven days.

• Buoy and Coastal Observation Information: Wind and wave data from offshore buoys, as well as other coastal weather observations, can be found at: www.wrh.noaa.gov/mtr/buoy.php

Buoys data can also be obtained over the phone using the National Data Buoy Center's "dial-a-buoy" service: 1-888-701-8992.

Use the buoy number below when prompted to access the latest buoy observations.

Buoy #	Lat/Long	Location
46013	38.2N/123.3W	Bodega Bay
46026	37.8N/122.8W	San Francisco
46012	37.4N/122.9W	Half Moon Bay
46042	36.8N/122.4W	Monterey
46237	37.8N/122.6W	San Francisco Bar

III. Aids to Navigation

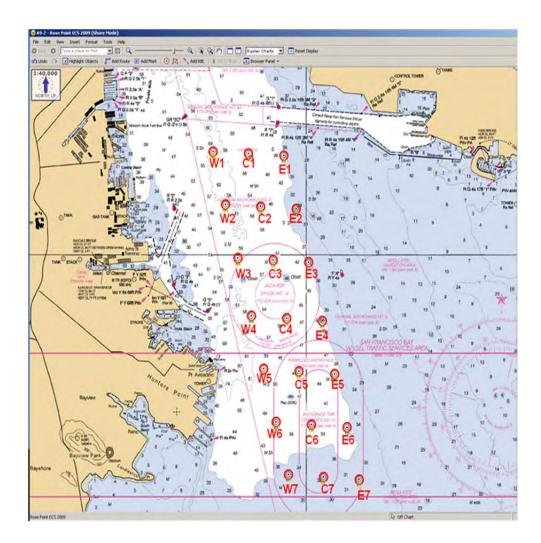
The waters of the San Francisco Bay Area are marked to assist navigation by the U.S. Aids to Navigation System. This system encompasses buoys and beacons conforming to the International Association of Lighthouse Authorities. The U.S. Aids to Navigation System is intended for use with nautical charts. The exact meaning of a particular aid to navigation may not be clear to an individual unless the appropriate nautical chart is consulted. Additional important information supplementing that shown on charts is contained in the *Light List, Coast Pilot* and *Sailing Directions*.

Aids to navigation in the Bay region are regularly reviewed. These reviews, known as the Waterway Analysis and Management System Studies (WAMS), are conducted by the U.S. Coast Guard with input from pilots and other waterway users. One of the results of these reviews was the establishment of new precautionary areas in the Central Bay and its approaches. (The prior traffic routing scheme, originally established in 1972, corrected the problems of contrary vessel movements in the Bay at that time.) The revised traffic routing scheme established a deep water traffic lane and a precautionary area between the Main Ship Channel traffic lanes and the Deep Water Traffic Lane (DWTL). It also established the Central Bay traffic lanes and expanded the associated precautionary areas. The northern traffic lanes were redesigned and the separation zones in the channel deleted. The Coast Guard also established Regulated Navigation Areas (RNAs) for San Francisco Bay and the ship channels of Oakland Harbor, Richmond Harbor/Southampton Shoal Channel, North Ship Channel, Pinole Shoal Channel and the channel under the Union Pacific Railroad Bridge in the Carquinez Strait.

Lighted buoys mark many of the major rocks near shipping channels in the Bay. A lighted buoy and a racon (radar beacon) mark Harding Rock, a submerged rock near the DWTL northwest of Alcatraz Island. Arch and Shag Rocks, which are submerged near Harding Rock, are unmarked. The Coast Guard determined that it was not necessary to mark these rocks. However, in September 1996, the Coast Guard established the San Francisco Bay North Channel Lighted Buoy 1 in position 37-49.9N, 122-24.5W to mark the shoal east of Alcatraz Island for deep-draft vessel traffic.

In addition to the hazards posed by rocks both above and below the water, area bridges create an additional challenge when navigating the Bay. There are racons on most bridges in the Bay Region. This is of major importance because racons are invaluable for radar navigation, particularly in fog, which is common to the Bay. Racons appear on radar screens as large coded signals extending in an arc behind the racon position. With racons placed on the center span of bridges, the mariner can determine the center of the bridge span, even in limited visibility. The Harbor Safety Committee continues to emphasize the importance of racons on bridges.

IV. Anchorages


Due to the extent of the Bay, a number of federally designated anchorages have been established in the San Francisco, San Pablo, and Suisun Bays and the San Joaquin and Sacramento Rivers. The *Coast Pilot* lists the area's anchorages and limitations. See 33 CFR 110.224 for regulations governing anchorages in the San Francisco Bay region. The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov.

Anchorage 9 is the only anchorage designated by the U.S. Coast Guard Captain of the Port where lightering of tankers and bunkering of vessels is allowed. Several explosive anchorages also exist, primarily within Anchorages 5 and 9 (see Map below). Explosive Anchorage 14, within Anchorage 9, was realigned in 1997 to provide deeper water in order to allow vessels laden with explosives, and with drafts of 38 feet or greater, to safely anchor. This also minimized potential overcrowding of vessels anchorage is made in the Coast Guard Notice to Mariners to advise vessels not to anchor within the area while vessels are laden with explosives within the Anchorage.

The Vessel Traffic Service (VTS), working in conjunction with the SF Bar Pilots (SFBP) has developed an anchorage berthing scheme in anchorage 9 in south San Francisco Bay. This berthing scheme is intended to provide more efficient and organized use of available anchorage space and leverage AIS technology to manage the anchoring of vessels.

The scheme creates twenty-four anchor berths laid out in three north-south columns and eight east-west rows. At the center of each berth is a .1 nautical mile (NM) (200 yards) "drop bucket" inside which vessels are to drop anchor. The layout provides for .6 NM (1200 yards) of north-south separation and .45 NM (900 yards) of east-west separation between vessels, allowing more than sufficient room for vessels to swing with the current without colliding. The western-most column lies .25 NM from the western anchorage boundary and the northern-most row lies .35 NM from the northern anchorage boundary, also allowing vessels to swing with the current while remaining inside the anchorage.

This scheme was presented to the Harbor Safety Committee on March 10, 2011 and a trial period began March 14. As this scheme has proved successful, it is now proposed as a local anchoring protocol or best practice. Once accepted, final coordinates will be provided to NOAA's Coastal Survey for inclusion in future editions of nautical charts, and amended language will be included in Coast Pilot 7.

V. Surveys, Charts and Dredging

The rivers and streams that empty into San Francisco Bay carry large quantities of silt into the harbors and shipping channels of the Bay. Therefore, channel depths must be regularly maintained and shoaling controlled in order to accommodate deep-draft vessels. Beginning in 1868, Congress passed the River and Harbor Act and the federal government began dredging a channel to create a main ship channel in the approaches to San Francisco Bay. Maintenance dredging accounts for approximately 5,000,000 cubic yards of sediments dredged from the San Francisco Bay, Sacramento and San Joaquin ship channels annually.

Actual channel depths may vary from project depths and must be checked with the most recent hydrographic surveys. Presently the project depth of the Main Ship Channel from the Pacific Ocean into the Bay is 55 feet deep and 2,000 feet wide. However, continual sedimentation flowing out of the river systems into the ocean reduces the Main Ship Channel from its authorized depths. According to the U.S. Army Corps of Engineers (CoE), there are no current plans to change the entrance channel's authorized width or depth. The depth of the main channel limits the draft of vessels able to enter the Bay.

During the past century, the federal government deepened a number of shipping channels, removed several shoals and reduced rocks near Alcatraz Island. There are a number of federally dredged channels in the Bay, some of which are narrow. For example, Pinole Shoal is 600 feet wide and the Stockton Main Ship Channel is 200 feet wide. Bay Area ports and channels are maintained to various authorized project depths. (Consult the latest *Coast Pilot* or NOAA charts.)

Deep-draft vessels in the Bay are often constrained to navigate only within the main shipping channels. Groundings have been reported in many areas of the region, in part due to the narrow width of many of the channels. Groundings can result in damage to vessels and property, with the potential for serious environmental consequences. A ship aground in a channel can block the transit of other vessels or create new shoaling, and may cause serious delays to Bay commerce. Maneuvering deep-draft ships in narrow channels with minimal underkeel clearance poses high navigational risks, given the complexities of tides, currents and weather conditions in the Bay.

Surveys

Surveys provide information on actual channel depths, reducing the risk of vessel groundings. The frequent shoaling and silting in the channels of San Francisco Bay and its tributaries require channel surveys to be conducted on a routine basis. Emergency surveys should be conducted when there is evidence that shoaling has occurred. Due to seasonal shoaling, some areas are surveyed on a more frequent basis. Even charts based on modern surveys may not show all seabed obstructions or shallow areas due to localized shoaling.

The variable hydrodynamics of the Bay estuary are due to a number of factors such as drought and flood cycles, dredging projects and in-Bay dredge disposal that may affect navigation channels. Strong seismic events may alter the bottom typography of the Bay due to liquefaction and lateral spread. Recent observations have indicated that manmade channels may be influencing tidal currents to a greater degree than anticipated, affecting sediment accretion.

Accumulation of disposed dredged material at the disposal site near Alcatraz Island resulted in the need for a new approach to dredged material management, leading to adoption of the Long Term Management Strategy (LTMS) for the placement of dredged material in the San Francisco Bay region by the state and federal agencies that regulate dredging and disposal. The LTMS provides the basis for uniform federal and state dredged material disposal policies and regulations, with a focus on minimizing in-bay disposal of dredged material.

Charts

NOAA's Office of Coast Survey (CS) designed a chart maintenance plan to provide support for the nation's largest commercial ports and trade routes. Selection of these ports and routes is based upon the tonnage and value of goods moving through them.

Raster Chart Products: NOAA has been active in developing electronic charts products. NOAA's entire suite of 1,000 nautical charts is available in raster format from nautical chart agents. There are 75 software developers that have produced 25 different navigational software applications utilizing these raster chart images.

Print-on-Demand Charts (POD): POD charts are available nationwide from contractors that are listed on the NOAA website: http://nauticalcharts.noaa.gov. The POD allows CS to update charts immediately and electronically transmit the updated information to users. (means for the user to update raster charts is being investigated. The user will be able to download Notice to Mariner corrections and other chart corrections from the internet website or bulletin board that can be merged with the existing file (on CD-ROM or other media) using a "raster-differencing" application that in essence performs a pixel-by-pixel comparison between the existing chart and corrections to produce an updated chart version. Beta testing of this experimental process is still in progress.

San Francisco Bay NOAA Nautical Charts				
	Chart Number	Chart Scale	Chart Title	
1	18640	1:207,840	San Francisco to Point Arena	
2	18645	1:100,000	Gulf of the Farallones	
3	18649	1:40,000	Entrance to San Francisco Bay	
4	18650	1:20,000	S.F. Bay: Candlestick Pt. to Angel Island	
5	18651	1:40,000	S.F. Bay: Southern Part	
6	18652	1:80,000	Small Craft Chart: S.F. Bay to Antioch	
7	18653	1:20,000	S.F. Bay: Angel Island to Pt. San Pedro	
8	18654	1:40,000	San Pablo Bay	
9	18655	1:10,000	Mare Island Strait	
10	18656	1:40,000	Suisun Bay	
11	18657	1:10,000	Carquinez Strait	
12	18658	1:10,000	Suisun Bay: Roe Island and Vicinity	
13	18659	1:10,000	Suisun Bay: Mallard Island to Antioch	
14	18660	1:40,000	San Joaquin River, Antioch to Medford I	
15	18661	1:40,000	Sacramento and San Joaquin Rivers	
16	18662	1:40,000	Sacramento River	
17	18663	1:20,000	Stockton Deep Water Channel	
18	18664	1:20,000	Sacramento to Colusa	
19	18680	1:210,668	Point Sur to San Francisco	

Vector-Based Charts: NOAA is building a database to produce an accurate and detailed vector electronic navigational chart (ENC) for major U.S. ports and shipping lanes. The vector charts include "active" information on navigationally significant features such as aids to navigation, bridges, anchorages, obstructions, wrecks, rocks, cables, traffic separation schemes, pipelines, platforms, cautionary and dredged areas. The ENCs for the SF Bay region are compiled and available online at http://nauticalcharts.noaa.gov.

Hydrographic Surveys: NOAA contracted for hydrographic surveys in the Bay in April 1999. Updates are continuously made by NOAA's Navigation Response Team and contract surveys.

Navigational Issues Associated with Channel Design and Dredging

Harding, Shag, and Arch rocks are large submerged rocks located approximately one to one-and-a-quarter nautical miles northwest of Alcatraz Island. The tops of the rocks are 36, 37, and 33 feet respectively below the surface of the water at MLLW. The submerged rocks are within the westbound traffic lane that passes north of Alcatraz Island and is designated for large vessels over 1,600 tons drawing 28 feet or less outbound to sea. Most inbound vessels sail south of Alcatraz Island; however, ships with a draft of more than 45 feet sail north of Alcatraz in the deep water traffic lane in order to maintain safe depths in the deeper waters within this area. Blossom Rock is 40 feet below the surface of the water at MLLW and is located approximately one nautical mile to the southeast of Alcatraz Island, posing a potential hazard to navigation for deep-draft vessels transiting Central San Francisco Bay. Harding, Arch, Shag and Blossom Rocks were lowered many decades ago for the shipping lanes, but today's large tankers and container ships have deeper drafts and now must avoid the submerged rocks. Lowering the rocks to accommodate the most modern ships would help create sufficient depths for a new twoway navigation lane north of Alcatraz Island, as well as provide a greater margin of safety for vessels transiting the area between Alcatraz and Treasure Islands.

The San Francisco Central Bay Rock Removal Project was initiated in April 2000 to review potential actions to prevent groundings on these rocks. Removing this hazard would significantly reduce the possibility of a major oil spill resulting from a vessel striking one of the mounds. Although there are other obstructions to navigation within the Bay, these rock mounds are especially dangerous due to their close proximity to the confined shipping lanes.

The U.S. Army Corps of Engineers (CoE), working with the Harbor Safety Committee's Underwater Rocks Work Group and the California State Lands Commission, investigated the economic and environmental feasibility of lowering the rock mounds to depths required for deeper draft vessels. After more than two years of study, the CoE concluded that with current shipping practices in place that are designed to ensure the safe passage of vessels within the Bay, the probability of a vessel actually grounding on the rocks became extremely remote. Non-structural measures (e.g., aids to navigation, tug support, emergency response) are regularly evaluated under the overall navigation safety mission of the Harbor Safety Committee. The low probability of occurrence, when applied to the potential damages that could result from a spill, reduced the project benefits well below the cost to lower the rocks. Therefore, the CoE determined there was not a federal interest in physically lowering some or all of the rocks.

VI. Contingency Routing

Dredging and construction may impact the routing of vessels in the Bay. Dredging of the shipping lanes is essential for safe navigation to the ports and marine terminals because so much of the Bay is shallow and subject to sedimentation. Therefore, maintenance dredging occurs on an ongoing basis. In addition, major projects to deepen various ports have taken place to accommodate the modern deep-draft vessels.

The six major bridges that span San Francisco Bay shipping lanes require regular maintenance of bridge fender systems. In addition, there are projects to strengthen the supports of several bridges for the purpose of seismic safety. Maintenance and construction work on the bridges often impacts navigation lanes.

During the many stages of a dredging or construction project that might impact the navigation of vessels, the project proponent and managers consult with pilots, vessel operators, the U.S. Coast Guard, affected port authorities and appropriate agencies. This ensures that consideration is given to the safety of navigation and any restrictions that may impact the movement of vessels.

The USCG Vessel Traffic Service (VTS SF or VTS) has authority under the Ports and Waterways Safety Act to direct vessel movement in case of emergency to ensure the safety and security of the Port. The Captain of the Port has authority to create Safety Zones and to regulate vessel traffic in the event of an oil spill, disaster or emergency.

San Francisco Vessel Mutual Assistance Plan (SF-VMAP). SF V-MAP is composed of member vessels, the Coast Guard, and passenger vessel operators who came together to develop an emergency response plan that would ensure a sufficient level of safety exists on small passenger vessels and enhance local capabilities to manage a catastrophic, waterborne Search and Rescue incident.

Contingency Routing. Cooperation and consultation between pilots, the USCG, port authorities and appropriate agencies and contractors should continue from the project planning stage through the construction stage of projects that may impact safe navigation in the Bay. The planning stage should include an evaluation of various alternatives to ensure harbor safety. To reduce the risk of accidents occurring during harbor construction, dredging and waterway modification projects, the long-standing permitting procedures of the U.S. Coast Guard, the San Francisco Bay Conservation and Development Commission, the U.S. Army Corps of Engineers, the U.S. Environmental Protection Agency and the San Francisco Bay Regional Water Quality Control Board should be specifically referenced as mandates.

Contractors are responsible for informing the USCG in advance of their planned and actual construction so that the USCG may advise and establish Safety Zones and/or provide cautionary notices and/or rerouting orders to mariners. A Safety Zone is a directive concerning a water area, a shoreline area or a combination thereof to limit access to authorized vessels. The Captain of the Port is authorized to establish temporary Safety Zones. Planning for alternate contingency routing during a construction project is not the responsibility of the Harbor Safety Committee.

Project planning and construction are underway for seismic retrofitting of various major bridges in San Francisco Bay. These seismic retrofit activities will affect mariners on a daily basis for several years. The Coast Guard, with input from the Harbor Safety Committee, has worked with CalTrans, bridge owners and contractors to develop guidelines for construction activity on the bridges. Sector San Francisco, VTS and S.F. Bar Pilots will continue to review the plans for mooring construction equipment at bridge sites to ensure a safe path for navigation. Bridge owners are responsible for ensuring that reliable communications exist between the bridge, the VTS and transiting vessels so they can pass information about the location of construction equipment or other factors affecting navigation.

The Eleventh Coast Guard District, Bridge Section provides information about bridge activities via telephone, letter, Local Notice to Mariners and Broadcast Notice to Mariners as appropriate. Mariners are reminded that heavy rain and high winter flows may result in reduced vertical and horizontal navigational clearances under bridges. Flotsam and drift may accumulate at bridge piers and abutments. Mariners should approach all bridges with caution and due consideration to existing navigational conditions. Notification of bridge-related discrepancies should be provided to the VTS via marine radio or telephone to ensure appropriate Notices to Mariners are issued.

Construction, retrofit and maintenance activities at bridges involve the use of scaffolds, temporary trestles, and marine construction equipment. (See Appendix L, Vehicular Bridge Inventory.) General information about construction activities is provided in the weekly Local Notice to Mariners. Immediate information is provided by Broadcast Notice to Mariners and VTS advisories. Some projects have special considerations such as minimum wake or scaffolding that reduces vertical clearance. The Local Notice to Mariners and VTS provide contact information to the various work sites, allowing mariners access to timely information. Commercial vessels may be asked to provide their "air draft" and their vertical clearance requirement directly to the bridges or to VTS to assist the bridges in anticipating the need for moving scaffolding. Mariners are advised to transit the work site with minimum wake to ensure safe working conditions at the bridge.

The cooperation of the maritime community during essential bridge work is appreciated.

VII: Vessel Speed and Traffic Patterns

Ship Traffic

A variety of commercial, military and public vessels enter, exit and transit the Bay. Many vessels such as ferries and tugs remain entirely within the Bay. Container ships, oil tankers and bulk carriers account for the greatest percentage of ship arrivals; however, a broad range of cargo transits the region every year. Other categories of ships include vehicle carriers, break bulk, chemical tankers and passenger ships. Occasionally, surface combatants, submarines and naval auxiliaries such as oil tankers and supply ships transit the Bay. Public vessels often encountered on the Bay include those of the U.S. Coast Guard, the Army Corps of Engineers, NOAA, and the Military Sealift Command.

In order to safely transit the shipping channels to marine oil terminals in the North Bay and Carquinez Strait, some large oil tankers lighter oil to barges or to smaller ships. Lightering is the process of transferring oil from a larger ship tanker into smaller vessels to reduce the draft of the larger tanker. The large tanker can then proceed to a marine terminal and continue discharging the balance of its cargo. Lightering operations in the Bay take place in Anchorage 9 just south of the Oakland-Bay Bridge. The California State Lands Commission provides annual reports of the amount of oil shipped through the region (see Appendices).

Speed of Vessels

In the Central Bay, where vessel traffic is heaviest, vessels must make abrupt movements to navigate around Alcatraz Island or transit under the Bay Bridge to the Port of Oakland.

In early 1993, the Coast Guard Marine Safety Office San Francisco Bay proposed that maximum speed limits be set for certain vessels in the Bay to improve safe navigation. The Vessel Traffic Service (VTS), in a two-week survey in early 1993, noted three large commercial vessels traveling at speeds between 18 to 20 knots within the Central Bay. These speeds were considered excessive, taking into consideration the narrow confines of the shipping lanes, the distance required for large vessels to stop, the many hazards and the number of other vessels generally present, such as commercial ships, ferries, recreational boats and tugs. During May 1993, VTS tracked the speed of 206 vessels inbound and outbound within the Central Bay, which included tankers, ships and tugs with tow. From this sample, it was concluded that the vast majority of vessels were traveling 15 knots or less.

The Captain of the Port requested the Harbor Safety Committee to formally comment on these findings. After a number of public meetings, the Committee agreed that maximum speed limits should be established for the main ship channels based on the operating characteristics of ships transiting the Bay. For example, industry related that lower speeds, such as a 12-knot limit, would unnecessarily restrict the maneuverability of some ships in swift currents. Also, certain ships can operate only in ranges of full ahead and half ahead, which may not coincide with an established upper speed limit. Taking this information into consideration, the Harbor Safety Committee endorsed the 15-knot speed limit. In addition, the Committee recommended that all vessels be in a response mode that would allow an immediate response to an engine order. It was agreed the maximum speed proposed would apply to an unescorted vessel of 1,600 or more gross tons. Vessels required to be escorted would still be governed by the speed at which assistance could be rendered as outlined in the tug escort regulations.

Federal regulation 33 CFR Parts 162 and 165 became effective May 3, 1995 (see Captain of the Port Advisory #05-095 below). These regulations state in part that the maximum speed for all power driven vessels of 1,600 or more gross tons **shall not exceed 15 knots** through the water from the COLREGS Demarcation Line to the southern tip of Bay Farm Island, Alameda and the Union Pacific Railroad Bridge in Benicia. The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov. This standard also applies to a tug with a tow of 1,600 or more gross tons. Power driven vessels of 1,600 or more gross tons shall not operate in control modes or with fuels that prevent an immediate response to any engine order ahead or astern or preclude stopping their engines for an extended period of time.

Following the November 7, 2007 allision of the *Cosco Busan* container vessel with the San Francisco-Oakland Bay Bridge, the Navigation Work Group analyzed the facts of the incident to determine if amendments were needed to speed limitations in the Bay to improve navigation safety. After consideration, the Work Group found, and the HSC agreed, that existing speed limitations in San Francisco Bay are adequate.

COTP Advisory #05-095 (4 May 1995): ENFORCEMENT OF NAVIGATION RULES IN SAN FRANCISCO BAY

This advisory provides a listing of the major deep-draft channels in San Francisco Bay and adjacent waters which the Captain of the Port considers to be "narrow channels or fairways" within the meaning of the International and Inland Rules of the Road. Rule 9, in both the International and Inland Rules of the Road, establish requirements for vessels navigating in the vicinity of narrow channels or fairways. Vessels and powerboats less than 20 meters (approximately 65 feet), all sailboats and vessels engaged in fishing shall not impede the passage of a vessel that can safely navigate only within a narrow channel or fairway. Additionally, a vessel shall not cross a narrow channel or fairway if such crossing impedes the passage of a vessel that can safely navigate only within that channel or fairway. The term "shall not impede" means a small craft must keep well clear and not hinder or interfere with the transit of larger vessels. Small craft and fishing vessels shall not anchor or fish in narrow channels if large vessels or barges being towed are transiting.

Coast Guard enforcement efforts, combined with a public education and information program, are further intended to draw public attention to the serious hazards created when smaller vessels impede large vessels. This effort should result in an improved level of navigational safety and reduce the risk of collisions, groundings and their potential consequences.

The Captain of the Port considers the following areas to be "narrow channels or fairways" for the purpose of enforcing the International and Inland Rules of the Road. This list is not all-inclusive, but identifies areas where deep-draft commercial and public vessels routinely operate. Included in this list and marked by an asterisk (*) are the Regulated Navigation Areas (RNAs) in San Francisco Bay, which were designated in 33 CFR 162 and 165. [May 1995] The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov.

a. All traffic lanes and precautionary areas in the San Francisco Bay eastward of the San Francisco Approach Lighted Horn Buoy SF (LLNR 360) to the San Francisco -Oakland Bay Bridge and the Richmond -San Rafael Bridge to include:

- *1. Golden Gate Traffic Lanes which include the Westbound and Eastbound Lanes west of the Golden Gate Precautionary Area.
- *2. Golden Gate Precautionary Area.
- *3. Central Bay Traffic Lanes, which include the Deep Water Traffic Lane, The Eastbound Lane (south of Alcatraz Island), and the Westbound Lane (south of Harding Rock).
- *4. Central Bay Precautionary Area.
- *5. North Ship Channel between North Channel Lighted Buoy "A" and the Richmond -San Rafael Bridge.
- *6. Southampton Shoal Channel including the Richmond Long Wharf maneuvering area.

- *7. Richmond Harbor Entrance Channel and the Point Potrero Reach ending at Point Potrero Turn and including the Turn Basin at Point Richmond.
- 8. Point Potrero Turn.
- 9. Richmond Harbor Channel in its entirety.
- 10. Santa Fe Channel in its entirety.
- *b. Oakland Harbor Bar Channel including the Outer Harbor Entrance Channel and the Inner Harbor Entrance Channel.
- c. Oakland Outer Harbor.
- d. Oakland Inner Harbor from Inner Harbor Channel Light "5" (LLNR 4670) to, and including, the Brooklyn Basin South Channel.
- e. Alameda Naval Air Station Channel in its entirety.
- f. South San Francisco Bay Channels between the central Bay Precautionary Area and Redwood Creek Entrance Light "2" (LLNR 5180).
- g. Redwood Creek between Redwood Creek Entrance Light "2" (LLNR 5180) and Redwood Creek Daybeacon "21" (LLNR 5265).
- *h. San Pablo Straight Channel from the Richmond-San Rafael Bridge to San Pablo Bay Channel Light "7" (LLNR 5900).
- *i. Pinole Shoal Channel in San Pablo Bay between San Pablo Bay Channel Light "7" (LLNR 5900) and San Pablo Bay Channel Light "14" (LLNR 5935).
- j. Carquinez Strait between San Pablo Bay Channel Light "14'.' (LLNR 5935) and the Benicia-Martinez Highway Bridge.
- k. Mare Island Strait between Mare Island Strait Light "2" (LLNR 6095) and Mare Island Causeway Bridge.
- 1. Suisun Bay Channels between the Benicia-Martinez Highway Bridge and Suisun Bay Light "34" (LLNR 6655).
- m. New York Slough between Suisun Bay Light "30" (LLNR 6585) and San Joaquin River Light "2" (LLNR 6670).
- n. Sacramento River Deep Water Ship Channel from Suisun Bay Light "34" (LLNR 6655) to the Port of Sacramento.
- o. San Joaquin River from San Joaquin River Light "2" (LLNR 6670) to the Port of Stockton.

Rules of the Road Enforcement: Timely reporting and enforcement of Rules of the Road infractions promotes safer navigation. Vessel masters, pilots, and operators are encouraged to report incidents, which merit investigation. Reports will be fully investigated and may result in license suspension or revocation proceedings or the assessment of civil penalties.

VIII: Accidents And Near-Accidents

Accidents. The Coast Guard compiles reports of marine accidents or reportable casualties of commercial, military and recreational vessels. A "reportable casualty" is defined in Title 46, Code of Federal Regulations, Part 4 (46 CFR 4.05-1) as any accidental grounding or unintended strike of a bridge; loss of primary steering or propulsion or associated control system; an occurrence materially and adversely affecting the vessel's seaworthiness or fitness for service; loss of life; injury beyond first aid; or damages over \$25,000. The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov. Sector San Francisco provides accident summaries in monthly reports to the Harbor Safety Committee.

Near-Accidents. The Vessel Traffic Service (VTS), managed by the U.S. Coast Guard, summarizes near-accidents or close calls reported within the area covered by VTS. Incident reports are designed to include near-collisions, vessels impeding progress of other vessels, and violations of any navigation rules. Categorizing an incident as a "near-miss" is a subjective determination based upon available information.

Reporting Requirements. As soon as is practicable, a VTS user shall notify the VTS of any of the following: (1) a marine casualty as defined in 46 CFR 4.05-1; (2) the ramming of a fixed or floating object; (3) a pollution incident as defined in 33 CFR 151.15; (4) a defect or discrepancy in an aid to navigation; (5) a hazardous condition as defined in 33 CFR 160.203; (6) improper operation of vessel equipment required by 33 CFR 164; (7) a situation involving hazardous materials for which a report is required by 49 CFR 176.48; or (8) a hazardous vessel operating condition as defined in 33 CFR 161.2. The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov.

Analysis and Actions Taken to Alleviate Accidents. In 1971, two tankers collided in the Main Ship Channel west of the Golden Gate Bridge, resulting in an oil spill. As a direct result of this accident, the VTS was established for the Bay region. The VTS system is fully described in a separate chapter.

Major bridges span shipping channels, connecting various populated areas of the Bay. The bridges are important traffic connectors under which large vessels must carefully navigate between spans. Vessels have struck all Bay bridges during the past 25 years, resulting in damage to the vessels and/or the bridges. Radar beacons (racons) have been added to most of the region's bridges to enhance the vessel operator's ability to safely navigate between bridge spans in all types of weather.

Sector San Francisco investigates all reported marine casualties occurring in the Bay region meeting the criteria set forth in Title 46, Code of Federal Regulations, Part 4. These investigations are conducted to obtain information surrounding the root cause of the casualty so that corrective action can be taken and subsequent casualties of the same nature can be avoided. In accordance with 46 CFR Part 5, investigations are also conducted to ascertain whether personnel misconduct, negligence or drug/alcohol use was a factor in the casualty. In such instances, a personnel investigation would be conducted. Procedures such as these are administrative in nature and can affect a person's Merchant Mariner's License or Merchant Mariner's Document. The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov.

Civil penalty procedures may be warranted in a situation where a law or regulation has been violated. Civil penalty procedures are the only actions appropriate in the following: foreign flag vessel; personnel aboard foreign flagged vessels licensed under the authority of another nation; federally licensed pilots operating aboard a foreign flagged vessel while acting under the authority of a State Pilot's license; and unlicensed U.S. citizens. If a violation is determined to be criminal in nature, such action is reported to and pursued by the U.S. Attorney's Office.

The Harbor Safety Committee has representatives from a broad section of the maritime community and provides a platform for educational efforts and ongoing dialogue. Its work groups and community outreach help to prevent accidents in the Bay. The USCG, NOAA, state agencies, S.F. Bar Pilots, industry and representatives of recreational and environmental groups are all active participants.

In 1992, the Harbor Safety Committee recommended that the Coast Guard and VTS devise a more consistent system of reporting accidents and near-accidents, standardized with other areas, and to analyze the statistics on an annual basis with recommendations for improvements. This recommendation has been essentially accomplished in San Francisco Bay.

As part of this effort, the Harbor Safety Committee worked for adoption of a statewide definition of "near-miss." The following definition was adopted by the five California Harbor Safety Committees:

A reportable "Near-Miss Situation" is an incident in which a pilot, master, or other person in charge of navigating a vessel, successfully takes action of a non-routine nature to avoid: a collision with another vessel, structure or aid to navigation; the grounding of a vessel; or damage to the environment. The HSC also participated in establishing a system for voluntary reports of near-miss situations for the Coast Guard in order to prevent vessel accidents. A voluntary reporting form was adopted and included in the Vessel Traffic Service, San Francisco, June 1995 User's Manual. In addition, the Captain of the Port included the report form in the Marine Safety Office newsletter, and the San Francisco Bar Pilots Association made the report form available to its members. However, due to the Freedom of Information Act, the Coast Guard determined that anonymity could not be provided to persons making reports.

The USCG considered a program to address near-misses (or non-reportable near casualties); however, the program was put on hold in November 2002 due to a lack of funding.

IX. Communication

Radio Communications

Ship-to-ship and ship-to-shore communication for the maritime community in the San Francisco Bay Area is almost exclusively on marine VHF (very high frequency) radio. The level of usage varies with periods of saturation depending on the time of day and level of vessel traffic. Additional communication modes include telex, fax, internet, cell phones and AIS (Automatic Identification System) messaging.

VHF radio is expected to continue as the primary method for ship-to-ship and ship-toshore radio communications. Cell phones help to amplify or clarify information that would not normally be passed, or would be limited, over VHF radio. Nonetheless, cell phones are not a substitute for VHF radio as the primary means of communication with and between vessel traffic in the Bay Area.

AIS will help mariners to more quickly identify other vessels thereby reducing the duration and number of radio transmissions.

Please see Chapter XXI for brochures that address radio communication and safe vessel operations available from the San Francisco Marine Exchange.

CHANNEL	USE		
SAN FRANCISCO BAY COMMON FREQUENCY USAGE			
06	Intership safety. Also often used for non-distress traffic between USCG and other vessels.		
10	San Francisco Bar Pilots Pilot Boats		
	Agents San Francisco Marine Exchange Chevron Richmond Long Wharf		
12	Vessel Traffic Service San Francisco offshore traffic. Used between outer limit of Offshore Precautionary Area and VTS outer limit (38 nautical mile radius from Mt. Tamalpais).		
13	Bridge to bridge navigation		
14	Vessel Traffic Service San Francisco in-shore traffic. Use from outer limit of Offshore Precautionary Area, throughout San Francisco Bay, up to Stockton and Sacramento.		
16	Hailing/distress/safety.		
21A	U.S. Coast Guard reserved working frequency between USCG units only.		
22	Notice to Mariners		

Current Usage

CHANNEL	USE	
	U.S. Coast Guard and public working channel	
23A	USCG reserved working frequency for communications between USCG	
	units and other vessels.	
7A, 11, 77	Common tug working frequencies.	
18A, 19A		
79A, 80A,	Commonly used by fishing vessels.	
88A		
7A, 8, 9, 11,	Port Operations — Commercial intership and ship to shore working	
18A, 19A	channels. Commercial vessel business and operational needs.	
9, 68, 69,	Port Operations — Non-commercial; supplies repairs, berthing, yacht	
71, 72, 78A	harbors/marinas.	

TUG COMPANY CHANNELS			
9	Westar Marine Services		
10	Crowley Marine Services		
	Foss Maritime Company		
18A	AMNAV Maritime Services		
	Baydelta Maritime		
	Brusco Tug & Barge		
	Oscar Niemeth Towing		
	SeaRiver Maritime		
	Seaway Towing Company		
	Starlight Marine Services		
MARINE OPERATORS			
26, 84, 87	San Francisco		
27, 28, 86	Sacramento, Stockton, Delta		
VESSEL TRAFFIC SERVICE RADIO COVERAGE			
VTS has complete radio coverage throughout the region on its designated frequencies.			

Existing Limitations

Due to the many hills in the region that restrict line of sight, VHF Channel 13 has a number of blind spots because of the one-watt transmission limitation on the channel.

Equipment

1. San Francisco Vessel Traffic Service (VTS). VTS communications equipment consists of four remote sites located throughout the region that ensure complete VHF radio coverage of the VTS area.

2. San Francisco Bar Pilots. The San Francisco Bar Pilots' headquarters is located at the East end of Pier 9, San Francisco. The antenna for their primary system is located on Mt. Tamalpais.

3. **San Francisco Marine Exchange**. The Marine Exchange is located at Fort Mason Center, San Francisco. The Exchange shares the antenna on Mt. Tamalpais with the Bar Pilots. Their communication equipment includes:

A 50-watt transceiver on Channel 10.

A standard transceiver with a local antenna monitoring Channels 13, 14, & 18A.

History of VTS Channel

Due to increasing congestion on Channel 13, the USCG proposed to shift the primary VTS channel to Channel 14. A Harbor Safety Committee Working Group, consisting of persons from various maritime organizations in the Bay Area, also recommended the change, and the Harbor Safety Committee endorsed the Coast Guard's efforts to improve the communication system. On August 15, 1994, the VTS operating channel was changed to Channel 14 VHF and the change has significantly reduced the amount of radio traffic on Channel 13.

Marine Exchange Communication System

The San Francisco Marine Exchange, a non-profit agency that serves as the Clearing House for tug escorting of regulated tankers and barges, has backup battery systems for its computer, phone, and radio systems.

X. Bridges

The San Francisco Bay Area is crossed by a number of bridges that carry automotive and rail traffic. Most shipping traffic transits through moveable or fixed bridges with adequate vertical clearance for normal passage.

Geographic Boundaries

The boundaries of the area in this chapter are set in the West by the COLREGS Demarcation Line (Between Pt. Bonita and Mile Rocks), and in the East to include the Rio Vista Highway Bridge in the Sacramento River and the Antioch Highway Bridge in the San Joaquin River.

Schedule of Bridge Openings

Oceangoing vessels may transit under two vertical lift bridges, the Benicia-Martinez Railroad Drawbridge and the Rio Vista Highway Drawbridge. Both bridges are operated 24 hours a day and open for vessel traffic upon request. Approximately 30 minutes notice is beneficial and the bridges may be contacted by VHF or telephone.

For vessels intending to transit through the Benicia-Martinez Railroad Drawbridge, there is a well established protocol for requesting a lift. Copies of the protocol are available at the VTS website, www.uscg.mil/D11/vtssf/.

BRIDGE	VHF CHANNELS	PHONE NUMBER
Benicia-Martinez RR Bridge	13	(510) 228-5943
Rio Vista	9, 13, 16	(707) 374-2134

Adequacy of Ship-to-Bridge Communications

Ship to bridge communications takes place via VHF radio on designated channels or as required by drawbridge regulations (Title 33 CFR 117). Communications are considered to be adequate by the local maritime community.

Physical Characteristics of Bridges

When required by the Eleventh Coast Guard Bridge Office, under the provisions of Title 33 Code of Federal Regulations, Part 118, bridges over navigable waterways in the Eleventh Coast Guard District, are lighted and marked as permitted obstructions on the waterway. Standard markings include a range of two green lights marking the center of the bridge, which in the case of drawbridges, will shift from green to red when the drawspan is in anything but the full open-to-navigation position. Bridge piers in or adjacent to the navigational channel may be lighted at night with fixed red lights to identify them as obstructions. When required, bridges are equipped with sound producing devices that are used during periods of reduced visibility.

The region now has 12 Racons mounted on bridges. A racon is a radar sensor (radar beacon) that sends out a radar emission that shows up as a distinctive mark on a ship's radarscope. The racons were installed because there is a high volume of vessel traffic transiting under bridges and the Bay Area has the highest number of foggy days in the nation when visibility is less than one-half mile.

Racons are located on the following Bay Area bridges:

Benicia-Martinez (1) SF-Oakland Bay Bridge (3) Richmond-San Rafael Bridge (2) San Mateo-Hayward Bridge (1) Antioch Bridge (1) Rio Vista Bridge (1) Golden Gate Bridge (1) I-80 Crocket-Vallejo (2)

Bridge Clearances (See Appendices for most recent list of bridge clearances.)

Benicia-Martinez Railroad Drawbridge

To improve navigational safety for all vessels sailing through the relatively narrow opening of the drawbridge at Benicia, the Coast Guard has completed a number of initiatives:

Established a Regulated Navigational Area (RNA) at the bridge, which prohibits deep-draft vessel transits when visibility is less than 1000 yards. The Coast Guard revised the RNA to change the name of the bridge to the Benicia-Martinez RR Bridge, added a third visibility checkpoint, and clarified the procedures for downbound vessels that are moored or anchored between the Railroad Drawbridge and New York Point (that intend to transit the RNA once underway).

Installed white lights on the main channel piers to better identify the primary navigation channel. The white pier lights recommended for installation on the main channel piers have provided better visibility in foggy conditions and have been made permanent.

Asked the Union Pacific Railroad (UPRR) to change the working frequency of the bridge radiotelephone to VHF Channel 13, to allow vessels and bridge operators to communicate directly instead of using Vessel Traffic Service Channel 14. This change went into effect in 2001.

Investigated bridge malfunctions and created natural working group to find solutions to process and equipment problems.

Had CalTrans make modifications to the RACON on the adjacent highway bridge, which has improved the signal to downbound vessels.

Evaluated the obstructive character of the bridge under the Truman-Hobbs Act of 1940, a long term process to determine if increasing bridge clearances will provide benefits to navigation greater than the costs of modifying the bridge. The outcome of such a study would determine if the bridge should be altered.

Most of the recommended bridge improvement items have been completed by UPRR. UPRR has installed a new auxiliary power system including new generators and transformers, along with a new signal system. New enhancements include replacement of the bridge lift motors, installation of a computerized system to monitor train locations and track conditions and a computer system to track vessels upbound or downbound for the bridge.

To address problems occurring with the operation of the Benicia-Martinez Railroad Drawbridge, industry, the pilots and the Coast Guard continue to work with the bridge owners via the Benicia-Martinez Railroad Drawbridge Natural Working Group. The working group meets semi-annually to discuss problems with the bridge and to develop solutions. The working group is coordinated by the Bridge Section of the Coast Guard's Eleventh District and is regularly attended by representatives from both the rail and marine industries, as well as Coast Guard Sector and VTS. Under the working group's direction Union Pacific has developed a formal training program for bridge operators, which includes ship rides for familiarization and training from VTS on the communications protocol to help avoid potential or near-miss situations. The working group created a mishap matrix to track incidents involving the bridge. Both the Coast Guard and UPRR provide information to the matrix, which is used as a problem-solving tool and historical reference.

XI. Small Passenger Vessels – Ferries

Small passenger vessels (ferries) operate year round on San Francisco Bay, San Pablo Bay and their tributaries, carrying nearly six million passengers on 240 transits per day. In total, passenger vessels made up nearly 60 percent of all transits tracked by the San Francisco USCG Vessel Traffic Service (VTS) in that year. Other ferries carry tourists and dinner cruises year round in the Central Bay.

In 2007, the state legislature established the San Francisco Bay Area Water Emergency Transportation Authority (WETA), as a regional agency with responsibility to develop and operate a comprehensive Bay Area public water transportation system and to increase the emergency response capability of waterborne transit. WETA is charged with: consolidating Vallejo and Alameda Ferry services under WETA, consistent with the provisions of a Transition Plan by July 1, 2009; coordinating emergency response activities for water transit services in cooperation with MTC and other agencies, consistent with the provisions of an Emergency Response Plan by July 1, 2009; and increasing regional mobility by adding seven new ferry routes to triple ferry ridership by 2025. The first new ferry route began service in June 2012 between South San Francisco's Oyster Point Marina and Oakland's Jack London Square.

WETA is committed to using the most environmentally friendly ferries in the nation and setting a national air emissions standard with its fleet of ferries. By the end of 2009 WETA's first four 25 knot vessels will be operating in the Bay Area on existing regular commuter ferry routes and will be available as spare vessels in the event of an emergency. The first, Gemini, was delivered in December 2009 and is being used on the Tiburon and Alameda/Oakland ferry routes.

Because of concerns associated with an increasing number of commuter ferries sharing the Bay with large shipping vessels and recreational boaters, the HSC requested the Ferry Operations Work Group develop an approach and maneuvering scheme in the vicinity of the congested San Francisco Ferry Building, as well as a routing protocol in the Central Bay to decrease the risk of collision for commute ferries. The routing was adopted by the HSC in 2008, and is included at the end of this chapter.

Small Passenger Vessel Services

Small passenger vessels are defined as less than 100 gross tons that are inspected and certified by the U.S. Coast Guard to carry passengers for hire. "T" vessels carry fewer than 149 passengers, "K" vessels carry more than 149 passengers. One "H" vessel (larger than 100 gross tons) is based in San Francisco.

Note: This overview is meant to describe larger private and public vessel operators and does not include the sport fishing or smaller vessel operators that meet the definition of small passenger vessel.

Ferry: Regularly scheduled, operate year round, and provide point-to-point service.

Regularly-Scheduled and Excursion: Seasonal and year round scheduled service, including sightseeing tours, dining, and/or entertainment.

Geographical Scope. Ferry routes bring passengers from outlying cities in the region to the city of San Francisco. Excursion routes operate primarily in the central San Francisco Bay. The following are small passenger vessel terminal locations as of June 2012:

- San Francisco Downtown Ferry Terminal
- Fisherman's Wharf, San Francisco
- San Francisco China Basin Ferry Terminal
- Oyster Point, South San Francisco
- Larkspur Terminal
- Gateway Alameda
- Clay St. Oakland
- Harbor Bay Isle, Alameda
- Vallejo
- Sausalito
- Tiburon

Small passenger vessels also operate on an unscheduled basis out of marinas in Sausalito, Alameda, Oakland and Berkeley.

Small Passenger Vessel Safety Program

U.S. Coast Guard San Francisco Vessel Mutual Assistance Plan. The purpose of the San Francisco Vessel Mutual Assistance Plan (SF V-MAP) is to ensure that a sufficient level of safety exists. It is intended to enhance local capabilities to effectively manage a catastrophic, in port Search and Rescue incident. The objectives of the SF V-MAP are to:

- 1. Create a "sufficient level of safety" as required by 46 CFR 117.207(f).
- 2. Provide effective and expedient emergency support by member vessels for a marine search and rescue operation on San Francisco Bay involving a large number of victims or potential victims.

- 3. Ensure lifesaving equipment available on each member vessel is appropriate for the waters of San Francisco Bay.
- 4. Promote professionalism in emergency preparedness and response.
- 5. Provide, through mutual assistance, a more effective and timely means to rescue all persons in the water (PIW).

Best Practices

S.F. Bay Area ferry operators participated in the Harbor Safety Committee Ferry Operations Work Group to develop common best maritime practices for safe passenger vessel operation in the Bay.

San Francisco Bay Area Ferry Operation in Inclement Weather. As described in the Harbor Safety Plan, localized microclimates can alter visibility along an entire route or a portion of a route. During summer, channel fog is prevalent in the central San Francisco Bay with outer areas clear. In winter months Tule fog can be widespread, dense in the morning with clearing later in the day.

The Master of a ferry is the person in charge of the vessel, responsible for the safety of the passengers and crew at all times, and has the authority to decide if it is safe to get underway or to proceed.

In reduced **visibility** and **inclement weather conditions**, the following practices are followed:

- A <u>go or no-go</u> decision to get underway is made by the vessel Master or the company Operation Manager, based on conditions along the entire route, using all available information including the experience of the Master and operations manager.
- <u>Look-outs</u>: the vessel Master assigns crewmembers for look-out duty based on the existing or anticipated conditions; the applicable regulations are found in the Navigation Rules and Regulations, Rule 5 Look-out (text attached).
- <u>Safe speed</u>: the vessel is required to proceed at a speed appropriate to the prevailing circumstances and conditions, which include state of visibility and the manageability of the vessel with special reference to stopping distance and turning ability. Other factors include participation in fixed ferry routes, wind advisories issued by NOAA, sea state, traffic density, and applicable Navigation Rules and Regulations (see attached verbiage from Rule 6 Safe Speed).

• <u>Equipment</u>: each ferry is required to have at minimum one radar; commuter ferry vessels generally have two operational radars onboard; the vessel Master is required to have a radar observer license endorsement. Global Positioning Satellite, Automatic Identification System and Electronic Charting navigation systems are also installed and used to assist navigation.

In conditions of **high wind and waves**:

- <u>Go/no-go</u> decision is made by the vessel Master or the company Operation Manager, based on conditions along the entire route, using all available information including the experience of the Master and operations manager. Factors to be considered include size of the vessel, direction of the winds and seas, orientation of departure and arrival piers to prevailing conditions, and limitations of ferries to travel at slower speeds.
- <u>Passenger safety</u>: Captain can maneuver the vessel to minimize wave effects. Crew duties include rough weather announcements and passenger safety management.

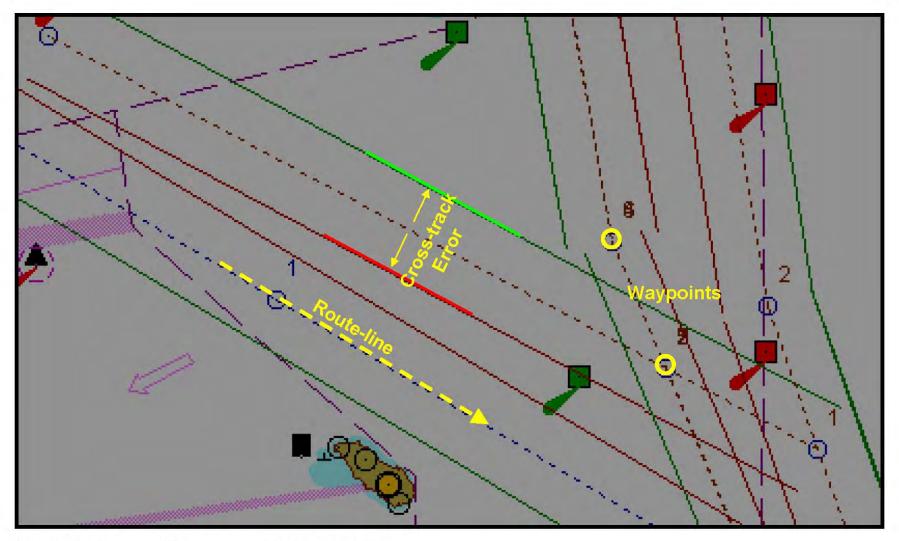
High Speed Ferry Operations (over 30 Knots). U.S. Coast Guard Navigation and Vessel Inspection Circulars (NAVIC) 5-01 and 5-01 Change 1 provide specific guidance for high speed passenger vessels and include approved vessel operation manuals, training programs and risk assessment tools (matrix).

- <u>Vessel equipment</u>: operators have exceeded minimum requirements for navigation electronics including dual radar, Global Position Satellite and electronic charting with Automatic Identification System overlay.
- <u>Manning/Training</u>: Vessels traveling at high speed are required to have a minimum of two qualified watch-standers during normal operations. Vessel operators have developed approved training programs for high speed navigation in compliance with NAVIC 5-01 and 5-01 Change 1.

Ferry Traffic Routing Protocol

The Bay Area's commute ferry companies/agencies agreed to work with the Harbor Safety Committee, Coast Guard Vessel Traffic Service (VTS), the Water Transit Authority and maritime stakeholder to develop a protocol for ferry navigation in the San Francisco and San Pablo Bays. The Ferry Operations Work Group conducted a two-year process to develop an approach and maneuvering scheme in the vicinity of the congested San Francisco Ferry Building, as well as a routing protocol in the Central Bay to decrease the risk of collision for commute ferries. The Work Group agreed to protocols and referred them to the Harbor Safety Committee, which adopted the Work Group findings and recommendations in May 2008.

The Ferry Traffic Routing Protocol consists of planned routes and communications procedures for improving ferry navigation safety. When ferries follow routes, the Closest Point of Approach (CPAs) with other ferries is greatest at points where speeds are typically greatest. The adopted routes cross at predetermined locations at nearly right angles, enabling ferries to predict crossing situations and plan ahead.

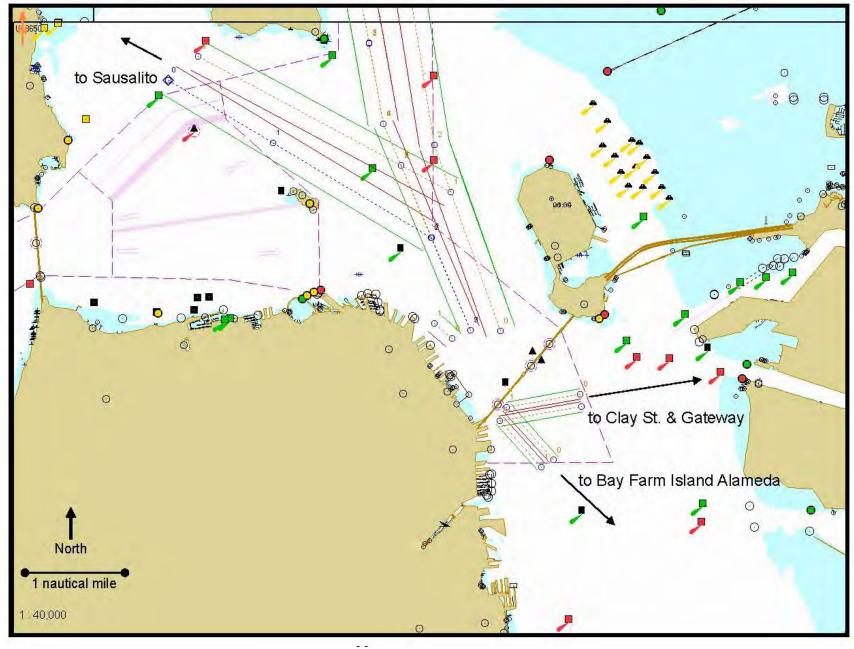

Within an approximately one-half nautical mile zone around the San Francisco Ferry Building, the protocol calls for port-to-port meeting and heightened radio communications. For inbound Ferry Building ferries, the protocol requires planning far enough in advance to avoid getting within approximately one-half nautical mile from the Ferry Building if another ferry is still at the inbounder's dock.

This reduces crowding around the Ferry Building. With ferry routes charted on nautical charts, other types of vessels can more easily predict the locations of ferries and steer clear. The Ferry Traffic Routing Protocol supports aggressive use of electronic nautical charts (ENCs) with intergraded Automatic Identification System (AIS). When all ferries consistently update their AIS data and follow routes, the protocol will ultimately lead to reduced VTS-ferry communications.

Ferry routes and the Ferry Building Approach Zone are shown in Figures 1-7, attached, and are incorporated herein. Diagrams are screen print files from vector-based electronic nautical charts (ENCs). Additional lines and labels were added to the screen print files for emphasis and clarity. For more information contact:

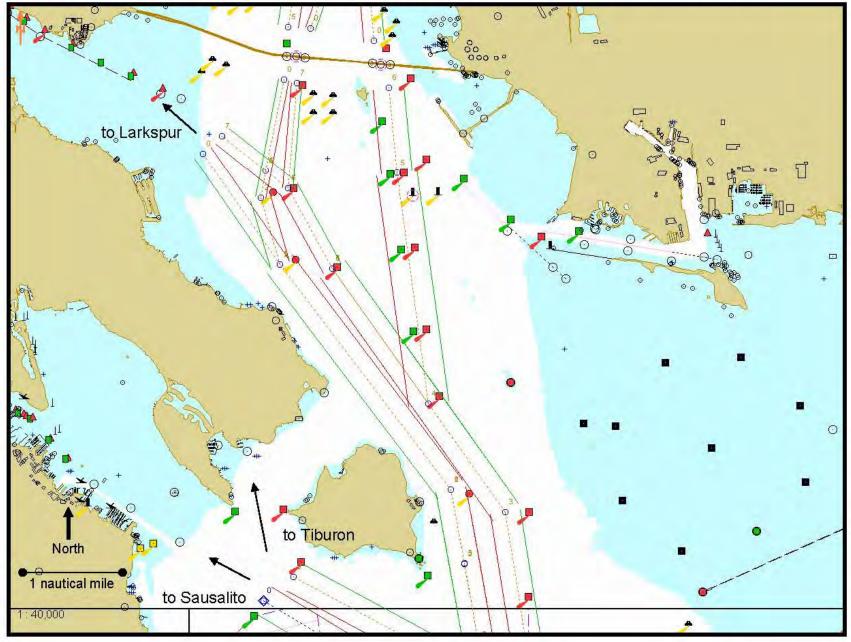
Scott Humphrey Training Director Sector San Francisco Vessel Traffic Service Phone: +1 415 399 7444 Email: <u>scott.humphrey@uscg.mil</u>

Diagram Key

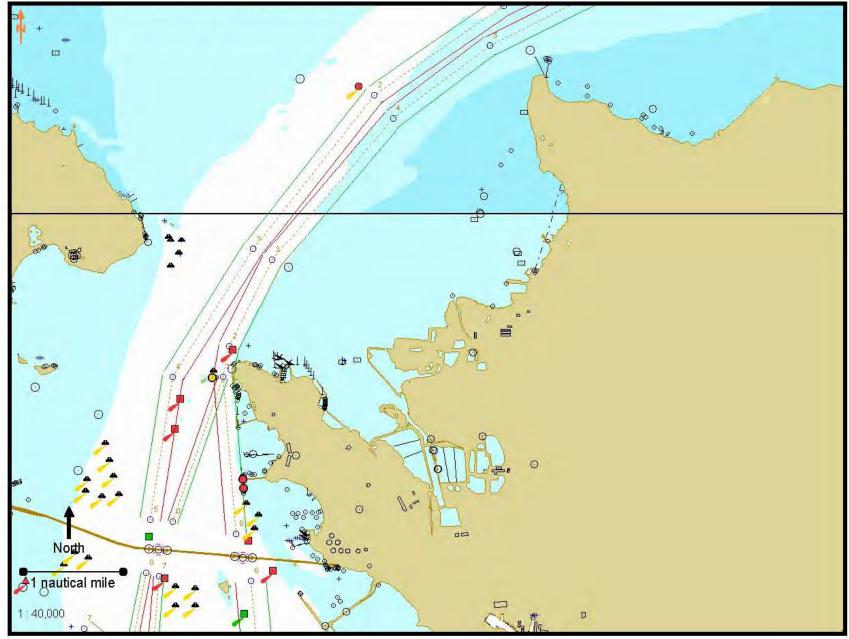

The following chart features are highlighted above.

Route-line: Centerline of the ferry route.

1

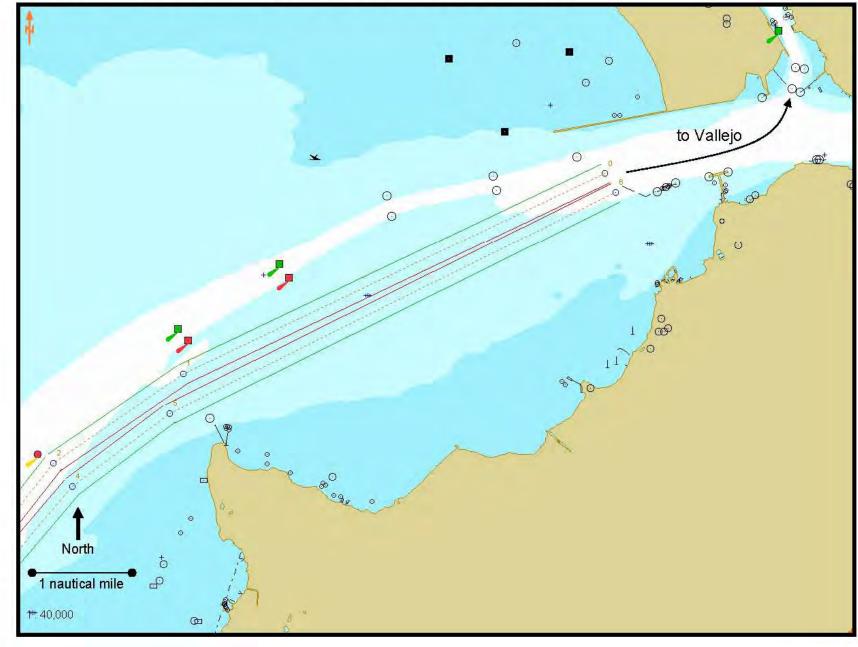

- Cross-track Error: Left and right of route-line tolerance.
- Waypoints: Turns, route crossing points, and communications points.

Central Bay and South San Francisco Bay

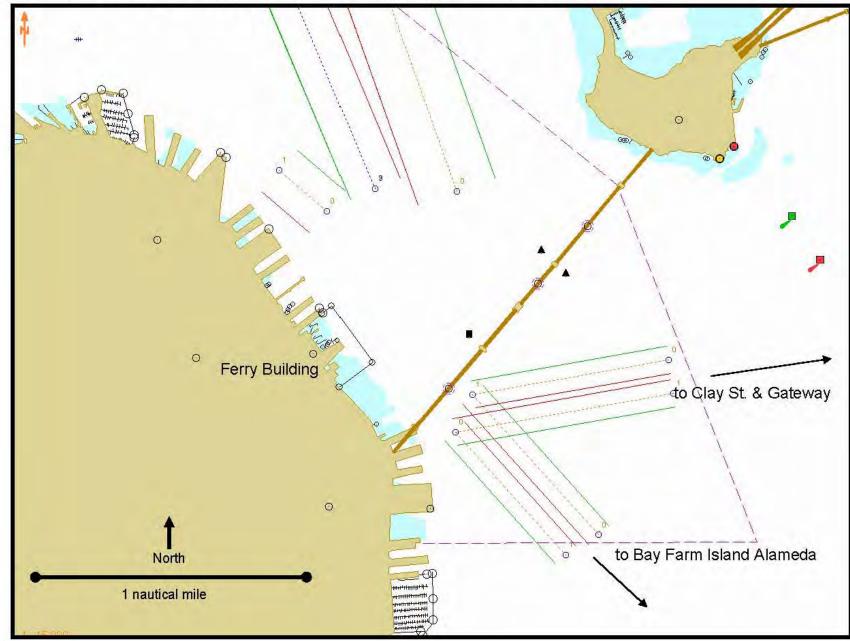


2

North Channel and Southampton Shoal Channel

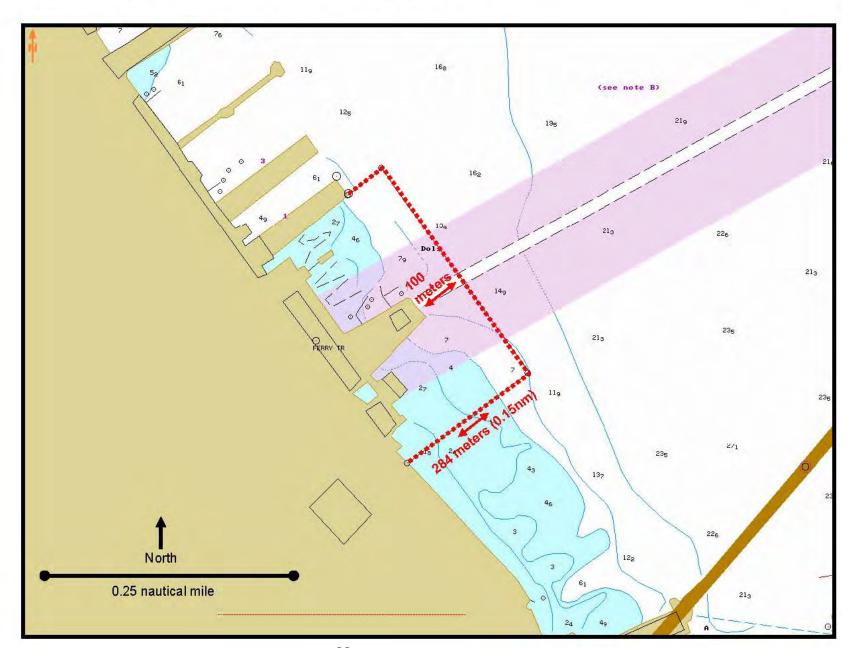


San Pablo Strait Channel



- -

San Pablo Bay and Mare Island Strait



Ferry Building Approach/Departure Zone

6

Ferry Building Maneuvering Area

7

Source and Contact Information

Diagrams are screen print files from vector-based electronic nautical charts (ENCs).

Additional lines and labels were added to the screen print files for emphasis and clarity.

For more information contact:

Scott Humphrey Training Director Sector San Francisco Vessel Traffic Service Phone: +1 415 399 7444 Email: scott.humphrey@uscg.mil

U.S. Coast Guard Authority to Regulate Vessel Speed

The Federal Ports and Waterways Safety Act of 1972 (33USC1223) grants authority to the Coast Guard to further regulate vessel speed, and specifically states:

[The Coast Guard] may control vessel traffic in areas subject to the jurisdiction of the United States which the Secretary [of the Department of Homeland Security] determines to be hazardous, or under conditions of reduced visibility, adverse weather, vessel congestion, or other hazardous circumstances by a number of means, including establishing vessel traffic routing schemes and by establishing vessel size, speed, draft limitations and vessel operating conditions.

Under 33 Code of Federal Regulations (CFR) 161.11, the Coast Guard may, through the Vessel Traffic System (VTS), issue measures or directions to enhance navigation and vessel safety and to protect the marine environment, including establishing vessel traffic routing schemes.

International Regulations for Prevention of Collisions at Sea (COLREGS)

Maritime practices accepted worldwide are codified under the International Regulations for Prevention of Collisions at Sea (COLREGS), which address look-outs, safe transit speed, risk of collision, and conduct of vessels in restricted visibility.

Rule 5, Look-outs, states that "Every vessel shall at all times maintain a proper look-out by sight and hearing as well as by all available means appropriate in the prevailing circumstances and conditions so as to make a full appraisal of the situation and of the risk of collision."

Rule 6 states, in part, that, "Every vessel shall at all times proceed at a safe speed so that the vessel can take proper and effective action to avoid collision and be stopped within distance appropriate to the prevailing circumstances and conditions." Rule 6 continues, stating that factors to be taken into account in determining a safe speed include, but are not limited to, the state of visibility and the manageability of the vessel with special reference to stopping distance and turning ability in the prevailing conditions.

Rule 7 addresses risk of collision, and states, in part, that, "Every vessel shall use all available means appropriate to the prevailing circumstances and conditions to determine if risk of collision exists. If there is any doubt such risk shall be deemed to exist."

Rule 19, Conduct of Vessels in Restricted Visibility, states, in part, that, "Every vessel shall proceed at a safe speed adapted to the prevailing circumstances and conditions of restricted visibility [and] every vessel shall have due regard to the prevailing circumstances and conditions of restricted visibility when complying with the Rules...."

XII. Small Vessels

Background

Within the Bay, many recreational boats and commercial fishermen transit navigational shipping lanes and some approaches to port and marine terminal facilities. The central part of the Bay, with the heaviest concentration of population in close proximity to the shoreline, has the largest number of small boat marinas along the San Francisco, Alameda, Contra Costa, and Marin County shorelines. Two-thirds of approximately 20,000 Bay Area marina berths are located in the Central Bay. This number does not include facilities on the Sacramento and San Joaquin Rivers.

The last Sunday in April (Opening Day on the Bay), Memorial Day, Labor Day and Fleet Week are times of extreme congestion by small vessels. There are many occasions where six or eight races may be held in the same venue, with vessels starting at five-minute intervals. This may lead to more racing congestion than a single large popular regatta. Race instructions now carry a warning regarding interference with large vessels.

Motorized vessels occupying berths in the Bay area constitute only 15 percent of registered vessels using the Central Bay. Numerous boat ramps and launches encourage use of the Bay by smaller motorized vessels and increasingly popular non-motorized vessels such as canoes, kayaks, windsurfers and paddleboards. While only a percentage of boat owners and renters are on the Bay at any given time, sunny weekends may bring thousands of pleasure boat users on the Bay's waterways.

Coast Guard, commercial ship, tug and ferry operators note that small craft are difficult to spot in periods of limited visibility, and present a poor or non-existent image on radar. Because of the limited navigable channels in the Bay, small craft may constitute a hazard to navigation.

In addition to the Bay's commercial fishing fleet, comprising approximately 1,000 boats, charter boats carrying numerous fishermen also fish the Bay and areas west of the Golden Gate Bridge. However, of this number, about 150 to 200 boats, principally berthed in San Francisco, Sausalito and Oakland, are used full-time for commercial fishing. Many of the licensed commercial fishermen are part-time operators, fishing on weekends and holidays by trailering small boats to launch ramps. In the Bay the only commercial fish caught are herring, anchovies and halibut, with herring the most important in-Bay fishery. During the December to March herring season, additional boats from other areas enter the Bay to lay their nets. The State Department of Fish and Game controls the number of boats fishing in the Bay during the herring season and regulates the manner of fishing.

Vessel Traffic Incidents

Sail and motor boats. Thousands of recreational boats are concentrated near the major inbound and outbound Bay shipping lanes. While many sailboats and motorboats are on the Bay, particularly on weekends, few near-misses or accidents are reported to the Coast Guard or Vessel Traffic Service. A number of reported and unreported near-misses may be prevented by small boats properly yielding the right-of-way to large vessels that cannot change course.

Kayaks, sail and paddle boards. A number of near-misses have been reported to the HSC by passenger ferry and cargo vessel operators over the past several years. Tragically, a fatality occurred in 2011 when a paddler was swept out of his kayak and never found when he tried to ride the prop wash of two operating tugs along the San Francisco waterfront. Also reported, a number of board sailors cross in front of tankers and container ships off Crissy Field, which is close to the Golden Gate Bridge. Competitive races are sponsored at this location throughout the year. Paddle boarders and kayakers attempt to traverse the Oakland Estuary turning basin while tugs are moving large container ships in the confined area.

Personal watercraft. No jet skis have been involved in a collision with a vessel and no fatalities have occurred in the Bay Area for a number of years.

Fishing boats. In 2007, a commercial fishing vessel was involved in a fatal deep-draft collision off the northbound VTS traffic lanes. This is the only reported accident since 2002. Many commercial and recreational fishermen have worked side by side with inbound and outbound ship traffic plus in-Bay vessel traffic for many years. Once commercial fishing gear is set in an area, it will remain in that location for a period of time. Subject to winds and tides, the gear may move in directions the fisherman may not have intended. Since this may create a hazard to navigation, a warning regarding possible interference with other vessels should be made to VTS.

	Subjects	
U.S. Power Squadrons	Boating Safety Rules of the Road, Basic	
www.usps.org	Rescue (A home video course is available for	
	purchase)	
U.S. Coast Guard Auxiliary	Boating Safety Rules of the Road, Basic	
www.cgaux.org	Rescue	
California Dept. of Boating and Waterways	Water Safety/Grades K-12, General	
www.dbw.ca.gov/boatsafecourse.asp		

Currently, the following boater education programs are available to the boating public in the nine Bay area counties.

In addition, the U.S. Coast Guard operates a Boating Safety Hotline (800.368-5647) that dispenses information and reference to local classes.

After reviewing information on licensing of small recreational boat operators, it was agreed that, at this time, emphasis on boater education and enforcement on the waterways would be a more effective approach to deal with unsafe operators rather than instituting the licensing of small boat operators.

XIII. Vessel Traffic Service

The U.S. Coast Guard established the Vessel Traffic Service (VTS SF or VTS) in San Francisco Bay in 1972, following a serious collision between two tank vessels that resulted in great environmental damage to the Bay. The Coast Guard continues to operate the VTS system and monitors nearly 400 vessel movements per day. The region is considered a difficult navigation area because of its high-traffic density, frequent episodes of fog and challenging navigational hazards. In 1996 Congress considered reducing the current level of funding for VTS SF. In response, the Harbor Safety Committee voted to support continued federal funding to maintain VTS SF at its current level in order to ensure navigational safety in the Bay.

The VTS for the San Francisco Bay region has six components: (1) Automatic Identification System (AIS), (2) radar and visual surveillance, (3) VHF communications network, (4) a position reporting system, (5) traffic schemes within the Bay, and (6) a 24-hour center that is staffed with specially trained vessel traffic control specialists.

The geographic area served by VTS SF includes San Francisco Bay, its seaward approaches, and its tributaries as far as Stockton and Sacramento.

VTS Mission

The primary mission of VTS San Francisco is to coordinate safe, secure and efficient transit of vessels in San Francisco Bay, including its approaches and tributaries, in an effort to prevent accidents or terrorist actions, which could result in loss of life, damage to property or the environment.

VTS implements and enforces the portions of the Ports and Waterways Safety Act that enhance navigation, vessel safety and marine environmental protection and promote safe vessel movement, by reducing the potential for collisions, allisions and groundings, and the loss of lives and property associated with these incidents.

VTS provides the mariner with information related to the safe navigation of a waterway. This information enhances the safe routing of vessels through congested waterways or waterways of a particular hazard. Under certain circumstances, VTS may issue directions to control the movement of vessels in order to minimize the risk of collision between vessels, or damage to property or the environment.

The owner, operator, charterer, master or other person directing the movement of a vessel remains at all times responsible for the manner in which the vessel is operated and maneuvered and is responsible for the safe navigation of the vessel under all circumstances.

VTS Authority

VTS regulatory authority comes from 33 CFR 161 Vessel Traffic Service Regulations. These regulations give VTS the authority to manage, control or direct vessel traffic within the VTS area. VTS may issue measures or directions to enhance navigation and vessel safety and to protect the marine environment, including, but not limited to:

- 1. Designating temporary reporting points and procedures;
- 2. Imposing vessel operating requirements; or
- 3. Establishing vessel traffic routing schemes.

The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov.

During conditions of vessel congestion, restricted visibility, adverse weather, or other hazardous circumstances, VTS may control, supervise, or otherwise manage traffic, by specifying times of entry, movement, or departure to, from, or within a VTS area.

Participation is required for all vessels that fall under the Bridge-to-Bridge Radio Telephone Act. Active participation (through a series of reports) is required for all vessels that fall under the Vessel Movement Reporting System (VMRS), defined as: powerdriven vessels 40 meters in length or greater; tugs, 8 meters or greater while towing; and passenger vessels certificated to carry 50 or more passengers for hire.

Through the exchange of vessel transit information, VTS provides vessel operators with up-to-date information, thereby facilitating safe transits for vessels interacting on the waterways.

VTS Position Reporting Requirements

Vessel position reporting requirements vary depending on a vessel's ability to transmit AIS information to VTS.

Offshore. Vessels are required to make radio reports on VHF Channel 12 when entering or exiting the offshore VTS reporting area, which extends approximately 30 miles west from the Golden Gate Bridge. Inbound vessels are required to report 15 minutes prior to crossing the offshore boundary, upon entering the respective Traffic Separation Scheme (TSS), and upon entering the precautionary area. Outbound vessels are required to report once at the San Francisco Sea Buoy, again at the TSS entrance buoy, at the terminus of the TSS and finally at the outer boundary of the VTS area. Radio reports include the name and type of vessel, route, course, speed, position and estimated times of arrival to various geographic locations. The VTS broadcasts a traffic report every 30 minutes: at minute 15 and 45 of each hour.

Within the Bay. Vessels report 15 minutes prior to and upon getting underway, docking, mooring, or anchoring or when departing from the VTS area. Position reports are also made when passing under most bridges, when pilots change, when emergencies arise and when deviating from standard procedures. Ferries operating on a scheduled route make one report prior to departure, and do not report again unless they deviate from their schedule or route.

Traffic Routing within San Francisco Bay

On May 3, 1995, the Coast Guard established seven Regulated Navigation Areas (RNAs) to reduce vessel congestion where maneuvering room is limited. These RNAs apply to the waters of the Central Bay, Oakland Harbor, San Pablo Bay, and the Benicia-Marinez Railroad Bridge. There are four VHF radio/communications sites located throughout the Bay which give VTS full radio coverage. VTS operates on channel 14 VHF for inshore traffic and channel 12 for offshore traffic, and monitors channel 13 throughout the VTS area.

VTS Training Program Overview

VTS Operators undergo extensive training. Before these traffic management specialists begin on-the-job training in the Operations Center, they undergo three months of intensive training at the VTS in the classroom and self-study, plus a month of offsite training. Offsite training typically includes a one-week Radar Observer Course, a oneweek Automated Radar Plotting Aid (ARPA) course, a one-week Basic Shiphandling course and a one-week course in Bridge Resources Management course. All training is tailored to the individual needs of the trainee.

After this initial classroom and self-study period, new Operators/Traffic Management Specialists then undergo three to four months of closely supervised on-the-job training. This training cycle can be shortened if the person has previous VTS experience; however, the average time for a new employee to become qualified in their primary job is six to seven months. New supervisors can take an additional two to three months before qualification.

Outreach and Partnership

The San Francisco Bar Pilots and the U.S. Coast Guard Vessel Traffic Service San Francisco, as well as other members of the maritime community, continue to share professional information in order to foster a team approach to the issue of navigation safety within the San Francisco Bay Area. VTS participates in the following outreach and partnership programs:

VTS-Pilots Issue Committee (VPIC). Founded in 1995, the VPIC—comprised of VTS' Operations Director, Operations Administrator, Training Coordinator and members of the San Francisco Bar Pilots—meets approximately every quarter to discuss how VTS and the Bar Pilots can better serve each other. Both agencies might bring in scenarios or review recordings, then discuss the interactions from their respective points of view. For example, VTS may explain why a particular deviation request from RNA regulations was not granted. With the VPIC interaction, VTS can explain the response from a VTS perspective, and the pilots can then explain why a requested deviation seemed safer from the pilot's point of view.

In addition to providing a forum for discussion, VPIC meetings have produced the automation of the transmission of ships' arrival and departure information between VTS and the Pilots, the development of a communication protocol to resolve communication issues around marine construction projects, and the refinement of reporting procedures in order to provide mariners with more accurate reports of ongoing marine construction in the Bay area.

San Francisco Vessel Mutual Assistance Plan (SF-VMAP). SF-VMAP is composed of member vessels, the Coast Guard and passenger vessel operators who came together to develop an emergency response plan that would ensure that a sufficient level of safety exists on small passenger vessels and enhance local capabilities to manage a catastrophic, waterborne Search and Rescue incident. VTS was active in the creation of this plan and continues to participate in annual drills and meetings. The San Francisco Marine Exchange is working in partnership with the Coast Guard to perform the administrative requirements of SF-VMAP.

Benicia-Martinez Railroad Drawbridge Working Group. This group is composed of members of the maritime community, the pilots' organization, various offices within the Coast Guard, the Union Pacific Railroad and major train lines. The group was formed to address the ability of the bridge to consistently provide a prompt response to lift requests or provide timely notification to an approaching vessel if mechanical problems or train movements would cause a delay in the bridge's response.

Outreach. VTS personnel spend many hours with people from various segments of the San Francisco Bay maritime community to learn about mariners' concerns and to educate mariners on how VTS can assist them. VTS personnel have been active participants on the Underwater Rocks Work Group, AIS Joint Planning Partnership, the Prevention through People Work Group, the Tug Escort Work Group, the Ferry Operations Work Group and the Navigation Work Group. Outreach efforts also have included many nontraditional stakeholders in the Bay area, such as the California Department of Transportation bridge engineers responsible for overseeing the various seismic retrofit projects in progress throughout the Bay. **Fishing Vessel Safety Group.** VTS is a participant in the FVSG. A VTS representative meets every other month with this group, which is comprised of representatives of other Coast Guard units, local fishermen groups and state agencies.

Marine Events. San Francisco Bay has more permitted marine events than any other port or city in the United States. VTS has an active outreach program to the boating public, which includes meeting with various recreational boating organizations throughout the year. VTS works closely with other Coast Guard personnel and yachting organizations during the permit process to prevent recreational vessels from impeding commercial traffic. The Coast Guard hosts annual Marine Event Workshops aimed at educating event coordinators about commercial maritime traffic, Rule 9 of the Navigation Rules and VTS operations.

VTS Shipride Program. All VTS personnel are required to participate in approximately six ship rides and/or shore-side visits each year. This, by far, is the best method for direct, person-to-person contact with port stakeholders and the sharing of suggestions. The requirements cover almost all areas of the maritime community: piloted ships, tugs, ferryboats and shore facilities.

VTS Operations and Requirements

Over the years since the inception of VTS San Francisco, the Coast Guard has periodically identified the need for upgrading VTS equipment to include state-of-the-art technology. VTS' system of tracking vessels by computer was initially installed in 1997. In 2000, the software and hardware were upgraded, and a renovation of VTS' communications system was completed. This communication system upgrade involved replacing radios at each of the VTS' high sites, converting them from an analog to a digital microwave system and installing a new radio control system. In December 2004, VTS was upgraded with Automatic Identification System antennas and software.

XIV. Tug Escort / Assist for Tank Vessels

In 1990, Senate Bill 2040 (the Oil Spill Prevention and Response Act) established that tug escorting was beneficial for tanker operations and directed expeditious development of escorting regulations for San Francisco Bay. The requirement is based on the legislative finding that there is a navigational safety advantage of tug escorts. Tug escorts can improve tanker safety in at least two ways. Tug escorts can serve as emergency maneuvering aids in the event of loss of steering or propulsion, and a tug escort may also assist as an independent aid in the navigation of a tanker.

The Final Report of the States/British Columbia Oil Spill Task Force (1990) concluded that the risk of an oil spill could be reduced by eight to 11 percent with the mandatory use of tug escorts. That report, endorsed by the State of California, suggested that the escorts be highly maneuverable, have speed complementary to the tanker with sufficient power to control tanker direction, and that the power and number of escort tugs should be proportionate to the deadweight tonnage of the tanker.

The Harbor Safety Committee (HSC) established a Tug Escort Subcommittee, which created Interim Guidelines for tug escorting in San Francisco Bay. The Interim Guidelines recommended: minimum requirements for tug escort equipment and crews; a formula for matching tugs to tankers; establishing a central Clearing House to measure bollard pull and monitor and document compliance with the regulations; setting tug escort zones in the Bay; and various operational considerations. OSPR caused emergency regulations to be established in the winter of 1992 based on the Interim Guidelines.

In the spring of 1993, the HSC adopted a revised set of Permanent Guidelines to supersede the emergency regulations. The Permanent Tug Escort Guidelines differed from the Interim Guidelines in a number of significant respects. The Permanent Guidelines altered the formula for matching tugs to vessels by changing the bollard pull formula from ahead static bollard pull equal (or greater) than the dead weight tonnage of a regulated vessel to the astern static bollard pull in the same ratio. Additionally, performance standards for stopping a tanker; equipment standards and inspection of tugs; positioning of regulated vessels; and training requirements for tug escort crews were established. During the State's administrative process, OSPR chose to reject the permanent guidelines on the basis of their lack of rationale and scientific basis for matching tugs to tankers.

The subcommittee began what grew into a two-year process of preparing a scientific study of how to match escort tugs to tankers, with the assistance of a consultant and by holding extensive public hearings on the results of the study. Based on state funding concerns and time limitations, industry volunteered to engage a consultant in conjunction with an industry-based Technical Advisory Group and the Tug Escort Subcommittee acting as a policy board. Glosten Associates was hired to prepare a professional study focusing on the specifics of tug escorting on San Francisco Bay. Additionally, the State funded a peer reviewer, Michael M. Baristas of the University of Michigan, to review the consultant's work and to mitigate concern regarding bias. Their reports were completed in the winter of 1994.

The Glosten Study had adopted a dual-failure standard (the simultaneous loss of both propulsion and steering) as the basis for measuring the force (tanker demands) required to recover from the tanker machinery failure and remain within the tactical area of performance. Further, the tactical area was based on the ninety-fifth percentile of success in stopping the tanker within the available reach and transfer. After review of the enabling scope of work and industry concerns regarding the likelihood of a dual failure and the attendant tanker demands, the dual standard was thought to be unreasonable. The subcommittee set up various working groups to review failure probability, waterway characteristics, and commercial and navigational safety implications of demand standards and requested that Glosten calculate demands based on single failures.

These efforts resulted in a second Glosten Study and reports on failure probability and waterway specific characteristics. The subcommittee reviewed these reports and adopted a single failure standard for the development of matching criteria.

The process involved close involvement and participation by the interested public and OSPR. On August 10, 1995, the full Harbor Safety Committee reviewed and adopted the Tug Escort Subcommittee's guidelines on a vote of twelve to one. The HSC promptly transmitted the new guidelines and recommendations to OSPR for implementation.

The Committee publicly reviewed the regulatory language proposed by OSPR. During the review of the regulations, several issues were identified as not being in compliance with the Committee's recommendations. The most critical issues were related to the intended use of checklists to review and develop a transit-specific plan versus OSPR's new requirements that plans be filed with OSPR thirty days in advance. OSPR subsequently agreed to modify its proposed language to comply with the intent of the Committee's guidelines, which the Committee adopted in January 1996.

OSPR held a public hearing on the proposed permanent tug escort regulations on March 19, 1996. Approximately 15 people testified at the hearing. Most supported the new regulations but a sizable group protested the use of a single-failure standard instead of a dual-failure standard. Many of those who commented also suggested minor modifications to the regulations, such as individualized, company-specific check lists and reducing pilot liability. Written comments were also received.

In addition to the public hearing process on regulations, OSPR is required by law to have regulations reviewed by the State Inter-Agency Oil Spill Prevention Committee, which reviewed and approved the regulations for implementation, and by the OSPR Technical Advisory Committee, which is purely advisory and has no approval or disapproval authority. The issue of dual- versus single-failure standard was again debated and it was concluded to continue with the single-failure standard.

The Tug Escort regulations became effective January 1, 1997. (See Appendices for current list of certified tug escorts, the current Clearing House Report on escorted vessel movements and for Amended Tug Escort Regulations.) There have been no significant issues in implementing the regulations.

It should be noted that the 1997 Tug Escort regulations require that:

The OSPR Administrator shall review the matching criteria and other program elements within two years of the effective date of this subchapter. The program review will include a survey of the tanker-related incidents in U.S. waters to determine the types of failures that have occurred, an assessment of tug technology and any advances made in design and power, and the tug escort organizations. At the conclusion of the review, the Administrator will determine whether it is necessary to modify the tug/tanker matching criteria or any other provision of the program requirements....

The OSPR review to determine whether any changes should be made to the tug/tanker matching formula met the January 1, 1999 deadline; however, the regulations did not require a report and none was prepared. Rather than conduct a review every two years, the HSC, on behalf of the Administrator, reviews incidents on an ongoing basis at its monthly meetings. If further evaluation is warranted, issues are referred to the appropriate Work Group for additional analysis. Any findings and recommendations are brought before the full Committee for discussion and vote.

Subsequently, in 2001-2002, the HSC Tug Escort Work Group initiated a "sunshine" review of the entire tug escort regulations for the San Francisco Bay Region. The Work Group met for a one-and-a-half year period. The meetings were well attended by representatives of tanker operators, tug operators, the San Francisco Bar Pilots, marine terminal operators, the U.S. Coast Guard, OSPR, State Lands Commission, the San Francisco Marine Exchange and a host of other local maritime professionals.

The cornerstone of the regulatory review was a thorough examination of the tug/tanker matching matrix. The Work Group met with Dr. David Gray, Naval Architect of Glosten Associates from the Seattle-based company that developed the original tug/tanker matching matrix. Dr. Gray reviewed the assumptions upon which the matching formula was based and the present mix of tankers that call in the Bay. After much deliberation, the Work Group concluded that the tug/tanker matrix remains valid and should not be modified (determination made at the January 15, 2002 Work Group meeting and reported to the HSC at its February 14, 2002 meeting).

Training for Tug Escort Crews. As a result of its study of the tug/tanker matching matrix, the Work Group determined that in order for tug escorts to be effective in an emergency, training of escort tug and ship crews under pilot direction should be addressed. The Work Group concluded that training exercises could not be mandated by regulation, as the training exercises must be individual to the tugs and vessels because of the wide variety of tankers, barges and tugs and variety of conditions on the Bay. The Work Group prepared guidelines entitled "Recommendations for Conducting Escort Training on San Francisco Bay," which outlines procedures for tug and ship crews, as well as pilots, to participate in live training exercises under agreed-upon, non-emergency conditions. A draft of the Recommendations was circulated to various tug, tanker, and barge companies and to the S.F. Bar Pilots.

The guidelines were adopted by the full Committee on May 9, 2002 (see Appendices). The HSC Secretariat, through the Marine Exchange, then sent a letter to all affected parties in the maritime community, encouraging companies to adopt the Recommendations. The Tug Escort Work Group reports that tug escort emergency maneuvers are being conducted on a voluntary basis in accordance with the HSC's Recommended Guidelines.

In September 2008, the Tug Escort Work Group was given a presentation of a Simulator Training Program for Tugs and Pilots that is being used in Puget Sound for tug captains, Puget Sound Pilots and B.C. Pilots. Over the years it has become evident that the opportunity for on-the-water exercises involving tankers and tugs has been extremely limited at best, with few individuals trained for actual events. However, with maritime simulators becoming more sophisticated in their ability to replicate a variety of situations and with a California Maritime Academy (CMA) simulator operational within a few months, the Work Group decided to explore the opportunity for simulating local conditions on a cost-effective basis to the maritime community within the San Francisco Bay Area.

The Work Group concluded that in addition to promoting simulator training for tugs escorting tankers, simulator training is applicable to tugs assisting and docking container ships, bulk carriers and chemical ships – thus providing industry-wide benefits for safe navigation.

The Harbor Safety Committee encourages the maritime industry to provide simulator training for tug personnel with pilot participation for emergency tug operations, based on local conditions. The training will improve communication between pilots and tug masters, offer in-house training to tug industry personnel, and provide valuable "lessons learned" for emergency situations in a controlled environment.

XIV.

Escorts for Non-petroleum Tankers. In 2003, the Harbor Safety Committee rescinded its prior recommendation to propose state legislation requiring tug escorts for vessels "carrying certain dangerous chemical cargoes in enough quantities to pose a risk" in San Francisco Bay, based on the following:

- It was extremely difficult to define dangerous cargoes and quantities that could be translated into legislation.
- Thorough analysis of this category of vessels in the Bay in calendar year 2001 did not reveal a pattern of problems or inadequate ship design.
- The Coast Guard has the authority through Port State Control to require tug escorts and to detain "problem ships" if necessary.

In 2004, State legislation (SB 1480) was proposed that would allow "[t]he OSPR Administrator, in consultation with the harbor safety committees, to adopt regulations governing tugboat escorts for other vessels carrying hazardous materials that are entering, leaving, or navigating in the harbors of the state."

The Harbor Safety Committee opposed SB 1480 and companion legislation AB 2777 because:

1. The Tug Escort Work Group carefully reviewed the nine-year record of Coast Guard Casualty reports for Chemical Tankers, the seven-year record of Coast Guard Captain of the Port (COTP) orders to require Chemical Tankers to be tug escorted, and Chemical Tanker arrivals in the Bay for the year 2003. Of 23 reported casualties, only four were for loss of steering or power; four were for the same ship, and seven were tankers carrying oil. The other casualties were minor in nature because of the broad definition of a reportable Marine Casualty.

Similarly, of the COTP orders for seven Chemical Tankers, five vessels carried oil and the other two most likely carried oil. The major increase in the number of Chemical Tankers was due to the change in definition of tankers by Lloyds of London. Also noted was the fact that most chemical tankers are double-hulled ships subject to strict standards and close vetting review.

2. The definition of "hazardous materials" is too broadly written to be meaningful in pinpointing the most dangerous chemicals and quantities hazardous to the public and the environment. As written, the legislation would affect almost every ship in the Bay, from cargo ships to tankers, and would not enhance safety.

3. The Work Group was concerned that, because the definition of hazardous materials is so broadly written, permanent broad powers would be granted to the OSPR Administrator with no criteria or analysis upon which to base his/her decision.

The Harbor Safety Committee sent its recommendation to the OSPR Administrator. The legislation was vetoed by the Governor.

XV. Pilotage

Pilotage is of primary import to Bay shipping because of complex local conditions consisting of narrow navigation channels, many bridges, swift tides and currents, variable weather patterns, and large numbers of ships and small vessels. For more than one-hundred-fifty years, the State has regulated pilotage over the Golden Gate bar through the State Board of Pilot Commissioners, which was created in 1850.

San Francisco Bar Pilots. This category of pilots is also referred to as Bar Pilots. A state license is required for a Bar Pilot to handle vessels entering the Bay and operating inside the Bay. A federal pilot's license is also required. The State Board of Pilot Commissioners regulates the number, licensing, training and disciplining of Bar Pilots for the Bays of San Francisco, San Pablo and Suisun.

Federal Pilots. Federal pilots are licensed by the U.S. Coast Guard to handle U.S. flag vessels under enrollment. State licenses for these pilots are not required.

Inland Pilots. An inland pilot is required to have both a state license and a federal license to pilot vessels solely inside of the Golden Gate. The State Board of Pilot Commissioners regulates inland pilots.

Ports of Stockton and Sacramento. The Ports of Stockton and Sacramento have separate pilotage authority from the Board of Pilot Commissioners. In practice, these ports issue commissions to certain pilots licensed by the state.

Docking Pilots. Section 1179 of the Harbors and Navigation Code allows shipping companies who expressed their intent to the Board of Pilot Commissioners before July 1, 1983, to have their own employees used as pilots in lieu of Bar Pilots. In the Bay, a grandfathering clause allows one shipping company to use its own employee(s) who are not subject to State Board of Pilot Commission regulations as pilots for docking. These employees are federally licensed.

Vessel Movements. The decision-making process by the Master and the Pilot to move a vessel should consider all relevant factors, including, but not limited to:

The characteristics of the vessel, such as maneuverability, size and draft;

The capabilities of the vessel's navigation equipment;

Tide, current and wind conditions on the intended route;

Time of the day in relation to whether the fog may be in a cycle of "burning off" or lifting;

Possible hazards along the route and amount and nature of vessel traffic; and

Visibility conditions at the dock, en route and at the destination, and assessment of whether these conditions are changing.

Harbors and Navigation Code Preventing Unlicensed Person from Performing Pilotage. State legislation requires the use of pilots on San Francisco Bay and provides penalties to prevent unlicensed persons from performing pilotage. The penalty for acting as a pilot while not holding a pilot license was increased to a maximum of \$25,000 (Harbors and Navigation Code Section 1126).

Navigation Technology

Following the Cosco Busan allision and spill in November 2007, the Governor directed OSPR to investigate the potential role of navigational technology in reducing the risk of vessel collisions in the San Francisco Bay Region. The HSC Navigation Work Group agreed to coordinate its review with the work of the Board of Pilot Commissioners, which formed a Navigation Technology Committee to develop recommendations for the enhancement of pilots' ability to safely navigate using shipboard and portable electronic navigation systems.

Over the course of several months, in investigating different types of navigation systems found on ships calling on the San Francisco Bay Area and the sufficiency of pilot training in the use of such systems, the Pilot Commission Technology Committee considered presentations by experts in navigation technology and in the education of mariners in the use of the technology. The committee also evaluated portable electronic navigation chart systems that can be brought aboard by pilots, various comprehensive reports on their use, liability issues and interface with shipboard equipment and how portable pilot units are regulated in other jurisdictions.

The HSC Navigation Work Group reviewed the recommendations adopted by the Pilot Commission and developed recommendations to the Harbor Safety Committee. The Work Group noted that prudent mariners rely on an array of informational sources when navigating, including paper charts, electronic charts, Army Corps of Engineers charts, USCG Notices to Mariners, etc.

Portable electronic navigation chart systems that can be brought aboard by pilots, or Portable Pilot Units ("PPUs"), are an additional navigational tool proposed to be carried by Pilot Commission-licensed pilots in San Francisco Bay. These units cannot supplant onboard systems; however, their use is appropriate in the Bay due to its variety of microclimates and periods of dense fog. To further navigational safety, the Work Group agreed to support international efforts to standardize symbols used on onboard charts. Confusion can result when piloting the more than 900 different ships that transit the Bay, many of which carry different charting systems featuring proprietary symbology. Future training of Pilot Commission-licensed pilots in advanced electronic navigation systems will include symbology used on different charts.

In July 2008, the HSC adopted the following specific recommendations:

1. Urge the Board of Pilot Commissioners, as a near-term priority, to work with the San Francisco Bar Pilots to incorporate in the Pilot training program enhanced training in advanced electronic navigation systems, providing exposure to a greater number of systems and variety of presentations.

2. Support adoption by the Board of Pilot Commissioners of a regulation to require that pilots licensed by the Pilot Commission be equipped with, and trained in the use of, portable electronic navigation equipment, commonly known as Portable Pilot Units ("PPUs"). The regulation should require that pilots be equipped with PPUs at all times while piloting except when the pilot deems that embarking on or disembarking from a vessel while carrying a PPU may present an unacceptable safety hazard to the pilot or when circumstances would prevent its use.

Such PPUs shall, at a minimum, have the following capabilities:

- (a) Displaying approved electronic navigation charts (ENCs) issued by the cognizant U.S. government authority;
- (b) Displaying the vessel's position and heading on such ENCs to the accuracy required by the International Maritime Organization (IMO) for Automatic Identification Systems (AIS); and
- (c) Displaying other navigational information as provided through the vessel's AIS pilot plug.

XVI. Underkeel Clearance

Many of the navigation channels within the Bay are subject to shoaling because of the nature of the Bay system, which is more fully described in Chapter V, Surveys, Charts and Dredging. Accurate tidal information is essential in order to calculate required underkeel clearances for vessel transit. This is particularly critical in the Bay region where minimal clearances may occur in certain channels. The committee reiterates its support for "real time" accurate measurement of tides, such as the P.O.R.T.S. system recommended in Chapter II, General Weather, Tides and Currents.

Underkeel clearance is the distance between the deepest point on the vessel and the bottom of the channel in still water conditions. Tank vessels carrying oil or petroleum products as cargo should maintain minimum underkeel clearances as listed below. The underkeel clearances are minimum standards during normal, calm conditions. Masters and pilots should use prudent seamanship and should evaluate the need for additional clearance to accommodate squat rolling, listing, sink and pitch.

The following are guidelines for underkeel clearance of tank vessels:

- a. Tank vessels west of the Golden Gate Bridge: Ten percent (10%) of the vessel's draft.
- b. Tank vessels under way east of the Golden Gate Bridge: Two feet (2).
- c. Tank vessels at final approach to berth and at berth: Always afloat.

Regarding single hull tankers, on July 30, 1996, the Coast Guard published the Final Rule (33 CFR 157.455, effective November 27, 1996) on Operational Measures to Reduce Oil Spills for Existing Tank Vessels of 5,000 gross tons or more without double hulls. In part, the regulations require the Master to calculate the vessel's deepest navigational draft, the controlling depth of the waterway and the anticipated underkeel clearance. In addition, the Master and Pilot are to discuss the tanker's planned transit. The regulations can be found on the web in the Code of Federal Regulations at www.gpoaccess.gov.

A Working Group was formed with representatives from the San Francisco Bar Pilots, Coast Guard, Port authorities and the maritime industry to evaluate the process of calculating, in a dynamic condition, underkeel clearances. The above guidelines on minimum clearances for the San Francisco Bay Area were established Captain of the Port.

XVII. Economic and Environmental Impacts

The Harbor Safety Plan must identify and discuss the potential economic and environmental impacts of implementing the provisions of the plan, and describe the significant differences in the restrictions that could vary from port to port within the geographic boundaries of the plan.

Economic Impacts. In order to make an economic assessment of the impacts of implementing the plan, recommendations that have a cost implication are identified with their potential economic impact. The following recommendations have a direct cost and an economic impact:

Tides and Currents. Federal, State and/or local funding is necessary for NOAA to conduct frequent, up-to-date surveys of major shipping channels and turning basins, and for the San Francisco Marine Exchange to operate and maintain the P.O.R.T.S. system.

Harbor Depths, Channel Design and Dredging. Conducting comprehensive annual condition surveys noting depths alongside and at the head of their facilities would be a cost for each facility owner or operator. Conducting more frequent, up-to-date surveys of channels known to shoal rapidly (i.e. Pinole Shoal Channel and Bulls Head Channel) would require an allocation of funds from the U.S. Corps of Engineers (CoE) and NOAA.

A new, two way traffic separation scheme north of Alcatraz was proposed that would require lowering areas such as Arch Rock, Harding Rock, and Shag Rocks to a minimum of -55' MLLW, and would cost between \$25 to \$43 million in federal and state (local) funds. The *San Francisco Bay Rock Removal Feasibility Study* was initiated in April 2000. The CoE, working with the Harbor Safety Committee's Underwater Rocks Work Group and the California State Lands Commission, investigated the economic and environmental feasibility of lowering the rock mounds to depths required for safe navigation. The CoE determined that there was not a federal interest in pursuing a structural alternative (physically lowering some or all of the rocks) as a result of the Feasibility Study. The San Francisco Central Bay Rock Removal Project was officially discontinued.

Bridge Management. The cost or installation and maintenance of energy absorbing fendering systems, bridge clearance gauges, water level gauges at bridge approach points, navigational lighting and racons on bridges over navigable waterways, where needed, would be borne by the individual bridge owners and operators such as the Union Pacific Railroad, CalTrans and the Golden Gate Bridge District.

Tug Escorts. The cost of tug escorts and standby tugs for ships and barges underway carrying more than 5,000 long tons of oil bulk as cargo in tug escort zones defined in the plan are directly borne by the shipper.

Pilotage. Future recommendations for pilotage may have cost implications.

Small Vessels. Federal, State and/or local funding is necessary to maintain and enhance the publication and distribution of pamphlets, brochures, videos, signs and other materials to increase boater education on shipping lanes, rules of navigation and safety guidelines for recreational boaters operating smaller vessels.

Each of the recommendations listed above has a cost that would be incurred by a commercial operator, port facility or government agency if that recommendation were implemented. To that extent, these would be economic impacts of the Harbor Safety Plan. Generally these items of cost are either capital items (such as new navigational equipment on bridges) or additional duties for an established agency.

The economic impact of the Harbor Safety Plan appears to fall equally on government agencies and private industry. The CoE, NOAA, bridge owners and operators, and each port and facility operator would be required to spend money to improve facilities they own or operate in order to meet the recommendations of the Harbor Safety Plan. In addition, private industry would be required to meet the cost of escort tugs and possible increased pilotage.

Differences in Restrictions from Port to Port. Seven ports are within the geographic boundaries of the Harbor Safety Plan: San Francisco, Oakland, Richmond, Redwood City, Benicia, Sacramento and Stockton. Nothing in this plan would create an advantage for any one of these ports as compared to any other port within the plan area.

Environmental Impacts

San Francisco Bay is a unique geographical area. It is the largest estuary on the Pacific Coast between Alaska and the tip of South America, with a shoreline, including sloughs, certain waterways and islands, of approximately 1,000 miles. Sixty-five percent of the rain and snowfall in California drains into rivers and creeks that feed the Bay.

Because of its size, depth and shelter from the open ocean, San Francisco Bay is a major harbor. Reflecting the trend in total U.S. commodities, a large percentage of the material shipped through the harbor is petroleum. The Bay presents a number of challenges to navigation, such as shallow waterways, narrow shipping lanes, vessel traffic, strong tides and currents, and occasional bad weather conditions, such as dense fog and strong winds. The Harbor Safety Plan has increased the level of navigational safety for the San Francisco Bay region, including the Ports of Sacramento and Stockton.

A major oil spill in the Bay would cause millions of dollars in damage to the marine environment, adversely affecting a variety of natural resources including wildlife habitats, water quality, commercial and recreational fishing, recreational areas, businesses, personal property and human safety. San Francisco Bay is part of the Pacific Flyway; in the winter months over one million birds use the area, which could be severely impacted by a sizeable oil spill. The wetlands, tidal flats, and open water of the San Francisco Bay Estuary provide essential habitat—food, water, shelter and other benefits—for over 500 species of fish, amphibians, reptiles, birds and mammals. A number of these species are threatened or endangered. In addition, there are almost as many invertebrate species in the ecosystem as all other animals combined, bringing the total number of species that use the Estuary to over 1,000. Just outside the Golden Gate, several marine sanctuaries protect some of the most productive coastal waters in the world. Spilled oil and certain clean-up operations can threaten the different types of marine habitats and other Bay resources.

As mentioned above, the Harbor Safety Plan has increased navigational safety throughout San Francisco Bay, thereby reducing the likelihood of a maritime accident that could result in the spill of a hazardous material, such as oil. Further, the Harbor Safety Committee, composed of representatives from the maritime community, port authorities, pilots, tug operators, the U.S. Coast Guard, the Office of Spill Prevention and Response, the petroleum and shipping industries, recreational boaters, the CoE and others with expertise in shipping and navigation, regularly meet to develop additional strategies to further safe navigation and oil spill prevention and to update the Harbor Safety Plan accordingly. As such, the Harbor Safety Plan has an overall beneficial impact on the environment since it furthers navigational safety and oil spill prevention, thereby helping protect the Bay from the adverse environmental impacts of a potential oil spill.

XVIII. Plan Enforcement

The Oil Spill Prevention and Response Act (Act) provides for the Harbor Safety Committee to suggest mechanisms to ensure that the provisions of the Harbor Safety Plan be fully, uniformly and regularly enforced. Traditionally, the U.S. Coast Guard has been responsible for the regulation of vessel movements and inspections through the authority vested with the Captain of the Port. Within the geographic boundaries of the Harbor Safety Plan, almost all oil terminals are privately operated and outside of the jurisdiction of local port authorities. The USCG also has been the mainstay of enforcement within the plan boundaries, and it is expected that it will continue in this role.

Under the Act, the State Lands Commission and the California Department of Fish and Game are granted dramatically increased roles and enforcement responsibilities. The State Lands Commission inspects facilities and vessels that are moored alongside the above-mentioned privately operated terminals, and monitors the cargo transfer operations. In the event of a violation, the appropriate state or federal agency is notified. The Department of Fish and Game enforces state regulations under the Act and monitors vessel bunkering operations along with the Coast Guard, and has the power to impose criminal and civil penalties for violations.

Tug Escorts are monitored by the Clearing House (CH), which was established to monitor the tug escort program for the Department of Fish and Game. The Marine Exchange of the San Francisco Bay Region administers the CH. The CH will confirm that all applicable tankers are escorted by an appropriate tug, and that the escort tug is on station prior to the movement of the vessel. In the event that the tug is not on station, the CH contacts the pilot, the master of the vessel, and the shipping company and/or agent and advises them accordingly. The vessel may not proceed until the escort tug is on station. The CH notifies the Department of Fish and Game of suspected violations. In the event that the tug breaks down during an escort, the master and the pilot will determine the safest course of action: whether to stop, to return to dock or to proceed.

Review and update of the Harbor Safety Plan is mandated to take place annually on or before June 30th. At that time, all aspects of the Harbor Safety Plan are assessed and the findings and recommendations for improvements are sent to the Administrator.

2004 Tug Escort Violations

After a four-year lull, 2004 saw a marked increase in violations of tug escort regulations within San Francisco Bay, San Pablo Bay and Suisun Bay. In 2004, the CH contacted the Office of Spill Prevention and Response (OSPR) 23 times in regard to possible violations. Of these, three notifications involved confusion over the alternate compliance status of one tanker operator and were ruled invalid by OSPR. The 20 remaining incidents were determined by OSPR to be infractions.

The majority of the infractions (13) involved tank barge movements in which the linehaul tug failed to notify the CH of the impending movement. Less frequent violations include failure of the escort tug to be certified for escort duties, failure of the escort tug to notify the CH, expired bollard-pull certificates and failure of the tanker pilot to notify the CH. Of the 20 infractions, the number of violations per company ranged from three companies with only one violation each to one company with seven violations.

OSPR Enforcement Process

Due to the increase in violations that occurred in 2004, the Committee raised concerns with OSPR's enforcement procedures and requested that OSPR shorten the amount of time between reported violations and their resolution. In response, OSPR has streamlined its procedures as follows: First, the CH will now report violations directly to the OSPR Legal Branch. Second, the OSPR Legal Branch will immediately notify the company of the reported violation. Depending on the severity of the violation and the history of the violator, either a notice of violation (informal) or an administrative civil penalty complaint (formal) will be sent to the owner and/or operator outlining the specifics of the violation, civil penalty assessed and OSPR's costs for investigation.

OSPR will continue to make periodic reports to the Committee on the status of current violations.

Coordination of Enforcement Responsibilities

The Coast Guard and the Department of Fish and Game coordinate policies and procedures to the greatest extent possible with each other and with other federal, state, and local agencies. Cooperation and coordination between agencies minimizes enforcement efforts required for all federal, state, and local regulations. This cooperation is essential since, relative to the Harbor Safety Plan, the Coast Guard is the primary enforcement agency for federal regulations, and the Department of Fish and Game is the primary enforcement agency for state regulations.

XIX. Substandard Vessel Inspection

Substandard Vessel Examination Program

Beginning May 1, 1994, the U.S. Coast Guard implemented a revised vessel boarding program designed to identify and eliminate substandard ships from U.S. waters. The program pursues this goal by systematically targeting the relative risk of vessels and increasing the boarding frequency on high risk (potentially substandard) vessels. Each vessel's relative risk is determined through the use of a Boarding Priority Matrix, which factors the vessel's flag, owner, operator, classification society, vessel particulars and violation history. Vessels are assigned a boarding priority from I to IV, with priority I vessels being the potentially highest risk. This program also aligns Coast Guard efforts with international initiatives through reliance upon a two-tiered boarding process, where the greatest effort and most detailed examinations are reserved for the highest risk vessels.

The International Maritime Organization adopted an amendment to the 'International Convention for the Safety of Life at Sea (SOLAS), 1974' with provisions entitled "*Special Measures to Enhance Marine Safety*," which became effective January 1, 1996. These provisions allow for operational testing during Port State examinations to ensure Masters and crews are familiar with essential shipboard procedures relating to ship safety.

The USCG Port State Control Branch continues its mission in identifying and eliminating substandard foreign commercial vessels from U.S. waters by use of the USCG's risk-based boarding priority matrix system.

At the HSC monthly meetings, the Sector reports on steering and propulsion casualties and other incidents impacting maritime safety.

XX. Recommendations Implemented or Addressed

The Harbor Safety Committee, through its work groups, adopted the following recommendations to reduce the risk of oil spills in the San Francisco Bay Region. The respective chapter of the Harbor Safety Plan includes background discussion of the issues addressed by each recommendation. The following recommendations have been implemented by the responsible agency.

I. Geographical Boundaries

No recommendations.

II. General Weather, Tides and Currents

No recommendations.

III. Aids to Navigation

No recommendations.

IV. Anchorages

It was recommended that the USCG adopt pre-designated anchorage areas within the existing general anchorages throughout the VTS SF area, and in particular within General Anchorage 9, so that safer and more disciplined anchoring practices may be managed by VTS SF. The final resolution was to divide the anchorage into two areas: the western side has been designated for deep-draft vessels and the eastern side for lighter-draft vessels. In addition, VTS requires that vessels not anchor closer than 750 yards from one another.

V. Harbor Depths, Charts and Dredging

1.a. The recommendation to "establish a new two-way Traffic Separation Scheme north of Alcatraz to allow safer navigation of deeply laden tankers" has been implemented, and is now referred to as the "Deep Water Traffic Lane." (Date established: 1992)

1.b. The recommendation requesting the Corps of Engineers to further evaluate the lowering of Harding, Arch, Shag and Blossom Rocks has been implemented. The COE determined that there was not a Federal interest in pursuing a structural alternative (physically lowering some or all of the rocks) as a result of the Feasibility Study for the proposed project. No further action. (See Ch. V, section on Navigational Issues Associated with Channel Design and Dredging.)

2. The recommendation to eliminate the dogleg at buoy "C" of the San Rafael main ship channel to maintain proper two-way traffic separation" has been addressed. This action was evaluated and found cost prohibitive. (Date addressed: 1993)

VI. Contingency Routing

No recommendations.

VII. Vessel Speed and Traffic Patterns

For the San Francisco main ship channels from the COLREGS Demarcation Line to and between the southern tip of Bay Farm Island and the Dumbarton Railroad Bridge:

- a) The maximum speed for all power driven vessels of 1,600 or more gross tons shall not exceed 15 knots through the water from the COLREGS Demarcation Line to and between the southern tip of Bay Farm Island and Dumbarton Railroad Bridge; and
- b) Power driven vessels of 1,600 or more gross tons shall in any case have their engines ready for immediate maneuver and shall not operate in control modes or with fuels that prevent an immediate response to any engine order ahead or astern or preclude stopping their engines for an extended period of time.

VIII. Accidents and Near-Accidents

The HSC adopted a definition of a reportable 'Near Miss' situation to standardize reporting along the California Coast. However, after consulting with the other California Harbor Safety Committees, the idea to establish a systematic reporting of a 'near miss' was abandoned because of the issue of potential liability by the reporting party. The USCG considered a program to address non-reportable near casualties on a national and international level, but put the program on hold in November 2002 because of lack of funding. (Date addressed: 2002)

IX. Communication

1. The recommendation to alleviate congestion on Channel 13 was implemented when the USCG shifted the primary VTS channel to Channel 14. The Harbor Safety Committee endorsed the Coast Guard's efforts to improve the existing system. (Date addressed: 1994)

2. The Harbor Safety Committee recommends the acquisition of adequate backup power supplies for the San Francisco Bar Pilots and San Francisco Marine Exchange communications systems. At a minimum, portable diesel generators obtainable commercially should be procured and arrangements made to provide means of powering minimal lighting and communications circuits.

X. Bridges

1. Bridge clearance gauges should be installed where needed, particularly drawbridges. (Note: USCG requires bridge clearance gauges. Please notify CG District 11 Bridge Administration of any discrepancies.)

2. Water level gauges should be installed at approach points to bridges. (Note: Water level gauges are not under the jurisdiction of the USCG. However, proposals to install gauges or other items on bridges will require permission from the bridge owner, followed by review and approval from the CG District 11 to ensure permitted bridge structures are not altered without approval.)

3. Request the Golden Gate Bridge Highway and Transportation District to install a RACON (radio beacon) to mark the center of the channel between the towers of the Golden Gate Bridge to better serve the mariner, particularly during periods of restricted visibility and heavy seas. (Note: RACONS were installed some time ago. Please notify CG District 11 Bridge Administration of any discrepancies.)

4. Request the Department of Transportation (Caltrans) to install racons on the D-E span of the San Francisco-Oakland Bay Bridge (instead of the G-H span), and the A-B span because the spans vary in height and width and currents can reach considerable velocities running parallel to the towers. (Note: RACONS were installed some time ago. Please notify CG District 11 Bridge Administration of any discrepancies.)

5. Request Caltrans and the Golden Gate Bridge District to shield bridge floodlights to reduce the glare for ships. (Note: Completed)

XI. Small Passenger Vessels – Ferries

1. The Ferry Operations Work Group recommends that the ferry routes developed by the Work Group working with ferry operators, captains and the VTS, be adopted by the Harbor Safety Committee and incorporated into the Harbor Safety Plan.

2. The Work Group further recommends the HSC work with NOAA to include the routes and accompanying notes on area nautical charts. (Date established: May 2008)

XII. Small Vessels

1. A meeting should be convened by the Harbor Safety Committee with the state OSPR, Fish and Game officials, herring fishermen, Coast Guard, and representatives of the Ports to discuss ways to avoid problems such as nets impeding navigation lanes or berthing areas, nets blocking the egress of fire boats, oil spill response boats and pilot boats, etc. This meeting could result in yearly pre-season meetings with fishermen, Fish and Game mailers to the fishermen informing them of spill prevention concerns, or other actions.

2. Pilots, Masters, and other interested parties should be invited to witness a series of races from the St. Francis Yacht Club race deck to obtain a view of events from the competitors' level.

3. Race officials and other interested parties should be invited aboard a large tanker while underway to get the pilot's perspective of racing vessels.

4. The Yacht Racing Association of San Francisco Bay should furnish full annual race schedules to all interested shippers, and, in particular, the Harbor Safety Secretariat for distribution.

5. The Yacht Racing Association should furnish optional courses and rounding marks used by participating entities. The race committee for each day's event should choose a course compatible with anticipated large vessel traffic.

6. The Coast Guard Auxiliary should observe and report infractions. The U.S. Coast Guard suggested that a mailer be prepared, to be inserted with vessel license renewal notices, advising owners of Inland Steering and sailing rules, Rule 9.

7. Expand the distribution of existing educational pamphlets available from the U.S. Coast Guard. These pamphlets provide information regarding the above-mentioned courses and the phone number for the Boating Education Hotline at (800) 336-2628 that would provide information regarding the scheduling of these classes. Distribute these educational pamphlets by: enclosing them in the boat registration renewal notices sent to boat owners by the Department of Motor Vehicles in the State of California (a follow-up mailing might also be considered to remind boat owners of these courses); enclosing them in local boat marina mailings to slip renters; requesting marinas to offer a one-time slip rental rebate for completion of a safe boater course.

8. Encourage vessel operators to document and report violations of the Rules of the Road to the local U.S. Coast Guard office. This would include a direct request to the San Francisco Bar Pilots to assist in this reporting effort.

9. Make public by publishing punitive actions taken against offenders by the U.S. Coast Guard. This information should be distributed to local yachting and boating magazines and marina newsletters. In addition, the California Department of Motor Vehicles should distribute a summary of punitive activities to registered boat owners.

10. Encourage the ongoing efforts of the local U.S. Coast Guard Auxiliary and Power Squadron organizations in their boating education and safety efforts.

XIII. Vessel Traffic Service

1. Scope of Coverage

- a. Develop standard VTS traffic management procedures for U.S. ports that conform to international standards.
- b. Make mandatory for civilian and military vessels the current voluntary participation in VTS and extend required participation to include vessels certified to carry 49 passengers or more (i.e., ferries).
- c. Incorporate the provisions of International Rule 10 in the federal regulations regarding VTS.
- d. Expand the area of sensor coverage by VTS SF to monitor the navigable waters of San Pablo Bay north of the San Rafael-Richmond Bridge and east of the Carquinez Straits to New York Point and Antioch. It is anticipated by this committee that San Pablo Bay may be covered by radar surveillance alone while television monitors, in addition to radar, may be needed in the area of the Strait where continuous change of heading could make radar monitoring alone difficult. Sensor coverage expansion has been repeatedly requested.
- 2. Changes in VTS Operations and Requirements
 - a. Adopt a dedicated VHF working frequency, Channel 14, for the exclusive use of VTS SF ship/shore communication system. Channel 13 should continue to be monitored and used for ship/ship communications.
 - b. Upgrade the current equipment used by VTS SF to include state-of-the-art technology (U.S. Coast Guard, *Port Needs Study:* Vessel Traffic Services Benefits, Volume I: Study Report and Volume II, Appendices, Part 2).

3. The Harbor Safety Committee supports continued federal funding for VTS San Francisco in order to ensure navigational safety in the San Francisco Bay Area.

XIV. Tug Escort/Assist for Tank Vessels

Over a period of five years, the Harbor Safety Committee took the following steps to establish tug escorting in the Bay:

- 1) Adopted Interim Tug Escort Guidelines in 1992.
- 2) Adopted Permanent Tug Escort Guidelines in 1993.
- 3) Adopted Revised Permanent Tug Escort Guidelines in 1995.

- 4) Amendments to Revised Permanent Guidelines Adopted January 1996 (Revised tug escort regulations effective January 1, 1997).
- 5) Recommended establishing a technical pilotage committee to review waterways specific maneuvers of tankers and tugs.

XV. Pilotage

1. The recommendation that the California Harbor and Navigation Code be amended to add requirements for shipping company employees eligible to pilot vessels in the Bay Area has been addressed by State and Federal regulation. (Date addressed: 1996)

2. The recommendation that Coast Guard regulations be amended for pilotage has been deleted as not under the purview of the Harbor Safety Committee.

XVI. Underkeel Clearance

1. The recommendation that "guidelines for underkeel clearances of tank vessels carrying oil or petroleum products as cargo" be established has been implemented by establishing the following minimum clearances:

- Tank vessels west of the Golden Gate Bridge: Ten percent (10%) of the vessel's draft.
- Tank vessels under way east of the Golden Gate Bridge: Two feet (2).
- Tank vessels at final approach to berth and at berth: Always afloat.

2. Because it may be more dangerous for a vessel to remain offshore in the Pacific Ocean in the approaches to the Bay during periods of restricted visibility, vessels inbound from the Pacific Ocean should continue to proceed from the Pilot Area into the Bay to a safe anchorage.

3. Ships within the Bay at a dock or at a safe anchorage should not commence movement if visibility is less than .5 nautical mile throughout the intended route, unless the Pilot's assessment of all variables listed under general principles is that the vessel can proceed safely. The Pilot's local knowledge should include knowledge of historic weather patterns during that time of year, current weather reports, and checking with reporting stations along the route.

XVII. Economic and Environmental Impacts

No recommendations.

XVIII. Plan Enforcement

The Coast Guard and the State Department of Fish and Game should coordinate policies and procedures to the greatest extent possible with each other and with other federal, state, and local agencies.

XIX. Substandard Vessel Inspection Program

Support the U.S. Coast Guard vessel inspection program of targeting substandard vessels in the Bay.

XXI: Harbor Safety Committee Educational Materials

The Harbor Safety Committee has produced a number of educational materials in an effort to increase safe use of the Bay. Copies of the following are available by contacting the San Francisco Marine Exchange at 415.441-6600.

Your Guide to Recreational Marine Radio Communications for San Francisco Bay. Brochure. July 2001.

Where The Heck Is Collinsville? Brochure. February 2002. Revised February 2008.

Mariners, Do You Speak Channel 14? Brochure. April 2003.

Sharing the Bay. Video, also available in CD and DVD format. Early 2004.

Rules 9 & 5...Laws To Live By. Brochure. May 2004.

P.O.R.T.S. (Physical Oceanographic Real-Time System) Brochure. December 2004.

Kayakers, Be Alert! Safety Sticker. April 2006.

Knowledge for Novice Boaters. Laminated safety placard. January 2007

Stop Mayday Hoax Calls. Laminated poster for USCG. January 2009.

Best Maritime Practices

Background. The container ship Cosco Busan allided with the Oakland Bay Bridge November 7, 2007, releasing approximately 53,000 gallons of fuel oil. Shortly afterward, Governor Schwarzenegger issued a directive to investigate and make recommendations on the navigational and operational aspects of the Cosco Busan allision. The HSC was assigned this task by OSPR. HSC Work Groups discussed the issues at length, developing recommendations to improve vessel transit in the Bay. The findings and recommendations developed by the Harbor Safety Committee in light of the allision covered a number of topics, some of which are included in the Harbor Safety Plan.

Additionally, prior to the Cosco Busan incident, OSPR directed the five Harbor Safety Committees in California to adopt Best Maritime Practices for each harbor to ensure that vessels in transit will be aware of the guidelines of operation in California harbors, to be incorporated into each Harbor Safety Plan. During 2008 and early 2009, the S.F. Harbor Safety Committee developed a number of Best Maritime Practices ("BMPs") for safe navigation in the San Francisco Bay Region; subsequently, other BMPs have been added. These guidelines, summarized below, provide important information necessary for safe, reliable and environmentally sound vessel movements in and around San Francisco Bay. The BMPs also are available on the Marine Exchange website: www.sfmx.org/support/hsc/hscbestpractices.php.

INDEX - Best Maritime Practices	Page No.
LARGE VESSELS and TUGS with TOWS \geq 1600 Gross Tons	
Speed Restrictions on San Francisco	85
Guidelines for Navigating in Reduced Visibility	87
Guidelines for Navigating in Severe Weather	
TUGS with TOWS <1600 Gross Tons	
Guidelines for Navigating in Reduced Visibility	
Guidelines for Navigating in Severe Weather	
ESCORT TUGS	
Emergency Training for Tug Escorting	90
SAN FRANCISCO BAR PILOTS	
Use of Portable Navigation Units	90
SMALL PASSENGER VESSELS - Ferries	
Guidelines for Navigating in Reduced Visibility and Severe Weather	91
Traffic Routing Protocols (with route diagrams)	
BUNKERING	
Communication Procedures to Improve Safety During Bunker Barge Tra	insfer
Operations	
Safe Bunkering Operations Alongside Oakland Berths 35, 37 and 55-59	105
Statewide Best Bunkering Practices	106
ANCHORAGE 9 BERTHING PROTOCOL	
Information Sheet	119

<u>Large Vessels and Tugs with Tows > 1600 GT: Speed Restrictions on San</u> <u>Francisco Bay</u>

Large Vessels are power driven vessels of 1600 gross tons or more, and tugs with tows of 1600 gross tons or more. Specific areas where a **15 knot speed limit** applies within the San Francisco Bay region are prescribed in 33 CFR 165.1181:

- Golden Gate Traffic Lanes, which include the westbound and eastbound lanes west of the Golden Gate Precautionary Area
- Golden Gate Precautionary Area
- Central Bay Traffic Lanes, which include the Deep Water Traffic Lane, the eastbound lane (south of Alcatraz Island) and the westbound lane (south of Harding Rock
- Central Bay Precautionary Area
- North Ship Channel between North Channel Lighted Buoy "A" and the Richmond-San Rafael Bridge
- Southampton Shoal Channel including the Richmond Long Wharf maneuvering area
- Richmond Harbor Entrance Channel
- Oakland Harbor Bar Channel including the Outer and Inner Harbors Entrance Channels
- San Pablo Strait Channel
- Pinole Shoal Channel
- Benicia-Martinez Railroad Drawbridge

Additionally, power driven vessels of 1,600 or more gross tons shall have their engines ready for immediate maneuver and shall not operate in control modes or with fuels that prevent an immediate response to any engine order ahead.

Note: In instances where a slower speed than the 15 knot RNA limit is required for safe navigation, the COLREGS will prevail.

See Harbor Safety Plan Chapter VII: Vessel Speed and Traffic Patterns for discussion.

<u>Large Vessels and Tugs with Tows</u> \geq <u>1600 GT</u>: <u>Guidelines for Navigating in</u> <u>Reduced Visibility</u>

Large Vessels are power driven vessels of 1600 gross tons or more, and tugs with tows of 1600 gross tons or more. Mariners are at all times to comply with the requirements of the COLREGS.

Critical Maneuvering Areas (CMAs): There are areas within the Bay where additional standards of care are required due to the restrictive nature of the channel, proximity of hazards, or the prevalence of adverse currents. Large vessels should <u>not</u> transit through CMAs when visibility is <u>less than 0.5 nautical mile</u>. Locations within the Bay identified as Critical Maneuvering Areas:

- Redwood Creek
- San Mateo-Hayward Bridge
- Oakland Bar Channel*
- Islais Creek Channel
- Richmond Inner Harbor
- Richmond-San Rafael Bridge, East Span
- Union Pacific Bridge
- New York Slough, up-bound
- Rio Vista Lift Bridge

*The Oakland Bar Channel is identified due to cross currents and its proximity to the Bay Bridge and Yerba Buena Island.

Vessels docked: Large vessels at a dock within the Bay should <u>not</u> commence a movement if visibility is <u>less than 0.5 nautical mile at the dock</u>.

Vessels proceeding to dock: Large vessels proceeding to a dock should <u>anchor</u> if visibility at the dock is known to be <u>less than 0.5 nautical mile</u>, unless, under all circumstances, proceeding to the dock is the safest option.

Note: Vessel pilots or operators should notify VTS upon determination that a scheduled movement will be delayed or cancelled. If underway, they shall make a sailing plan deviation report per VTS regulations.

Adopted March 2008. See Harbor Safety Plan <u>Chapter II: General Weather, Currents and</u> <u>Tides</u> for discussion.

Appendix A <u>Large Vessels and Tugs with Tows > 1600 gross tons: Guidelines for</u> Navigating in Severe Weather

A number of factors must be considered when limiting transits in the Bay or closing the Bar due to severe weather, including sea state, tidal influences, visibility, traffic density, and wind advisories issued by NOAA. The size, class and condition of the vessels being addressed must also be considered. The HSC recommends a tiered approach, applying greater caution as conditions worsen.

Sustained winds exceeding 25 knots in the Bay

- Vessels should closely evaluate whether it is safe to transit in the Bay. Size, class and sail area of the vessel, tidal influences, visibility, and traffic density should all be considered.
- VTS San Francisco will establish regular communications with bridge watches of VTS users in Bay Area anchorages, and more closely monitor swing circles to ensure vessels are not dragging.

Sustained winds exceeding 40 knots in the Bay

• Transits to and from berths are not recommended.

Sustained winds exceeding 40 knots and/or seas exceed 12 ft at the Sea Buoy

• Bar traffic restrictions and closure should be considered. Size and class of the vessel, draft, swell period, tidal influences, visibility, and traffic density should all be considered. Strong ebb tides should be avoided, and a minimum of 10 feet underkeel clearance is recommended.

Procedures for Closing the Bar or Restricting Bar Traffic

- Bar closures are exercised on a situational basis without specifically defined weather or security conditions.
- The most recent San Francisco Bar Pilot over the Bar, inbound or outbound, shall make the recommendation to the dispatcher that the Bar should be considered for closure, or traffic limited to one-way traffic.
- In the event that the station boat is "boarded off", then the station boat captain will make the recommendation to the dispatcher.
- The dispatcher will then notify the Operations Pilot, who will notify the Port Agent.
- The Operations Pilot or Port Agent will then notify the U.S. Coast Guard VTS and Command Duty Officer at the Sector San Francisco Command Center.

- The Captain of the Port will consult with the Operations Pilot or Port Agent prior to closing the bar under Captain of the Port authority. The Coast Guard will then issue a Marine Safety Broadcast communicating the closure or traffic restriction.
- The procedure for lifting traffic restrictions or re-opening the Bar will be the same as that for restricting traffic or closing the Bar.
- Vessels under Federal Pilotage or Public Vessel may petition the Captain of the Port to transit the San Francisco Bar.

Adopted January 2009. See Harbor Safety Plan <u>Chapter II: General Weather, Currents</u> and <u>Tides</u> for discussion.

<u>Tugs with Tows <1600 Gross Tons: Guidelines for Navigating in Reduced</u> <u>Visibility</u>

Critical Maneuvering Areas (CMAs): There are areas within the Bay where additional standards of care are required due to the restrictive nature of the channel, proximity of hazards, or the prevalence of adverse currents. Tugs with tows should <u>not</u> transit through CMAs when visibility is <u>less than 0.25 nautical mile</u>. Tugs with tows in <u>petroleum</u> service should <u>not</u> transit through CMAs when visibility is <u>less than 0.5 nautical mile</u>.

Locations within the Bay identified as Critical Maneuvering Areas:

- Redwood Creek
- San Mateo-Hayward Bridge
- Oakland Bar Channel*
- Islais Creek Channel
- Richmond Inner Harbor
- Richmond-San Rafael Bridge, East Span
- Union Pacific Bridge
- New York Slough, up-bound
- Rio Vista Lift Bridge

*Note: the Oakland Bar Channel is identified due to cross currents and its proximity to the Bay Bridge and Yerba Buena Island.

Vessels docked: Tugs with tows at a dock within the Bay should <u>not</u> commence a movement if visibility is <u>less than 0.25 nautical mile at the dock</u>. Tugs with tows in <u>petroleum service</u> at a dock within the Bay should <u>not</u> commence a movement if visibility is <u>less than 0.5 nautical miles</u> at the dock.

Vessels proceeding to dock: Tugs with tows proceeding to a dock should <u>anchor</u> if visibility at the dock is known to be <u>less than 0.25 nautical mile</u>, unless, under all circumstances, proceeding to the dock is the safest option. Tugs with tows in <u>petroleum service</u> proceeding to a dock should <u>anchor</u> if visibility at the dock is known to be <u>less than 0.5</u> <u>nautical mile</u>, unless, under all circumstances, proceeding to the dock is the safest option.

Note: Vessel captains or operators should notify VTS upon determination that a scheduled movement will be delayed or canceled. If underway, they shall make a sailing plan deviation report per VTS regulations.

Adopted February 2009. See Harbor Safety Plan <u>Chapter II: General Weather, Currents</u> and <u>Tides</u> for discussion.

<u>Tugs with Tows <1600 Gross Tons: Guidelines for Navigating in Severe</u> <u>Weather</u>

A number of factors must be considered when limiting transits in the Bay or closing the Bar due to severe weather, including sea state, tidal influences, visibility, traffic density, and wind advisories issued by NOAA. The size and condition of the vessels being addressed must also be considered. The Tug Escort Work Group recommends a tiered approach, applying greater caution as conditions worsen.

Sustained winds exceeding 25 knots in the Bay

- Tugs with tows should closely evaluate whether it is safe to transit in the Bay. Size and sail area of the vessel, tidal influences, visibility, operator skill and traffic density should all be considered.
- VTS San Francisco will establish regular communications with bridge watches of VTS users in Bay Area anchorages, and more closely monitor swing circles to ensure vessels are not dragging.

Sustained winds exceeding 40 knots in the Bay

• Transits to and from berths are not recommended, but may be performed following a careful risk management evaluation by the vessel operator and vessel management.

Sustained winds exceeding 40 knots and/or seas exceed 12 ft at the Sea Buoy

• Bar traffic restrictions and closure should be considered for tugs with tows. Size of the vessel, draft, swell period, tidal influences, visibility, and traffic density should all be considered. Strong ebb tides should be avoided, and a minimum of 10 feet underkeel clearance is recommended.

Adopted February 2009. See Harbor Safety Plan <u>Chapter II: General Weather, Currents</u> and <u>Tides</u> for discussion.

Emergency Training for Tug Escorting

A set of recommendations for conducting Escort Training on San Francisco Bay is included in the Harbor Safety Plan (Appendix J). The guidelines anticipated live escort training exercises; however, few opportunities arise for on-water exercises involving tankers and tugs, with few individuals trained for emergency events. With maritime simulators becoming more sophisticated in their ability to replicate a variety of situations and with a California Maritime Academy simulator soon operational, the HSC found simulating local conditions to be a cost-effective alternative to on-water exercises.

The Work Group concluded that in addition to promoting simulator training for tugs escorting tankers, simulator training is applicable to tugs assisting and docking container ships, bulk carriers and chemical ships – thus providing industry-wide benefits for safe navigation.

The HSC recommends the use of simulators to improve communication between pilots and tug masters, offer in-house training to tug industry personnel, and provide valuable "lessons learned" for emergency situations in a controlled environment.

Adopted November 2008. See Harbor Safety Plan <u>Chapter XIV: Tug Escort/Assist for</u> <u>Tank Vessels</u> for discussion.

S.F. Bar Pilots: Use of Portable Navigation Units

The SF HSC recommends that San Francisco Bar Pilots be trained in the use of and equipped with Portable Pilot Units (PPUs) at all times while piloting, except when the pilot deems that embarking on or disembarking from a vessel while carrying a PPU may present an unacceptable safety hazard to the pilot or when circumstances would prevent its use.

Such PPUs shall, at a minimum, have the following capabilities:

(a) Displaying approved electronic navigation charts (ENCs) issued by the cognizant U.S. government authority;

- (b) Displaying the vessel's position and heading on such ENCs to the accuracy required by the International Maritime Organization (IMO) for Automatic Identification Systems (AIS); and
- (c) Displaying other navigational information as provided through the vessel's AIS pilot plug.

Adopted July 2008. See Harbor Safety Plan Chapter XV: Pilotage for discussion.

Small Passenger Vessels - Ferries: Recommended Guidelines for Navigating in Reduced Visibility and Severe Weather

Safety Practices

The Master of a ferry is the person in charge of the vessel, responsible for the safety of the passengers and crew at all times, and has the authority to decide if it is safe to get underway or to proceed.

In reduced visibility and inclement weather conditions, the following practices are followed:

- A <u>go or no-go</u> decision to get underway is made by the vessel Master or the company Operation Manager, based on conditions along the entire route, using all available information including the experience of the master and operations manager.
- <u>Look-outs</u>: the vessel Master assigns crewmembers for look-out duty based on the existing or anticipated conditions; the applicable regulations are found in the Navigation Rules and Regulations, Rule 5 Look-out (text attached).
- <u>Safe speed</u>: the vessel is required to proceed at a speed appropriate to the prevailing circumstances and conditions, which include state of visibility and the manageability of the vessel with special reference to stopping distance and turning ability. Other factors include participation in fixed ferry routes, wind advisories issued by NOAA, sea state, traffic density, and applicable Navigation Rules and Regulations (see attached verbiage from Rule 6 Safe Speed).
- <u>Equipment</u>: each Ferry is required to have at minimum one radar; commuter ferry vessels generally have two operational radars onboard; the vessel Master is required to have a radar observer license endorsement. Global Positioning Satellite, Automatic Identification System and Electronic Charting navigation systems are also installed and used to assist navigation.

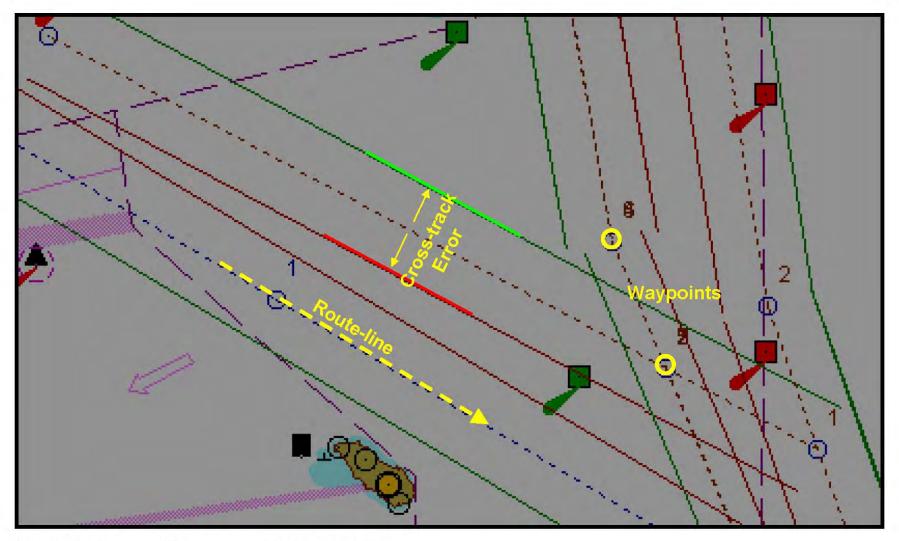
In conditions of high wind and waves:

- <u>Go/no-go</u> decision is made by the vessel Master or the company Operation Manager, based on conditions along the entire route, using all available information including the experience of the master and operations manager. Factors to be considered include size of the vessel, direction of the winds and seas, orientation of departure and arrival piers to prevailing conditions, and limitations of ferries to travel at slower speeds.
- <u>Passenger safety</u>: Captain can maneuver the vessel to minimize wave effects. Crew duties include rough weather announcements and passenger safety management.

High Speed Ferry Operations (over 30 Knots)

U.S. Coast Guard Navigation and Vessel Inspection Circulars (NAVIC) 5-01 and 5-01 Change 1 provide specific guidance for high speed passenger vessels and include approved vessel operation manuals, training programs and risk assessment tools (matrix).

- Vessel equipment: operators have exceeded minimum requirements for navigation electronics including dual radar, Global Position Satellite and electronic charting with Automatic Identification System overlay.
- Manning/Training: Vessels traveling at high speed are required to have a minimum of two qualified watch-standers during normal operations. Vessel operators have developed approved training programs for high speed navigation in compliance with NAVIC 5-01 and 5-01 Change 1.

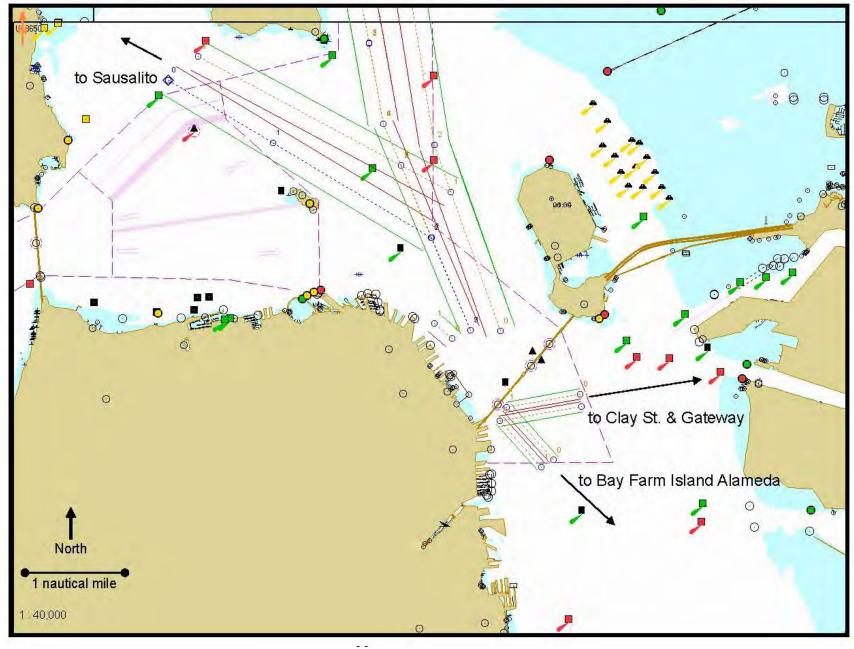

Adopted February 2009. See Harbor Safety Plan <u>Chapter XI: Small Passenger Vessels -</u> <u>Ferries</u> for discussion.

Passenger Ferry Traffic Routing Protocol

To avoid future possible ferry collisions, particularly in light of expanded fast ferry service, a protocol for ferry navigation in the San Francisco and San Pablo Bays includes routes and a Ferry Building Approach Zone, as shown in Figures 1-7 below.

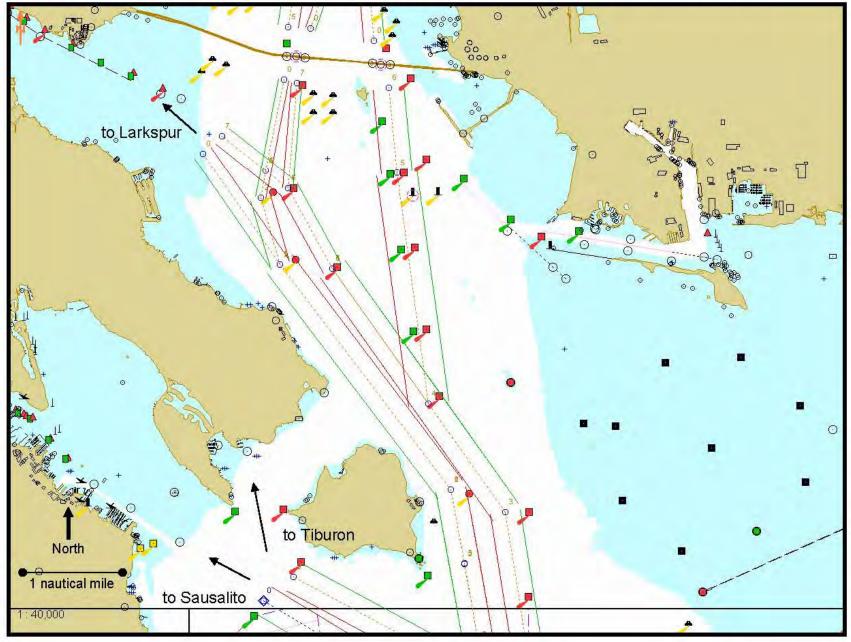
Adopted May 2008. See Harbor Safety Plan <u>Chapter XI: Small Passenger Vessels -</u> <u>Ferries</u> for discussion.

Diagram Key

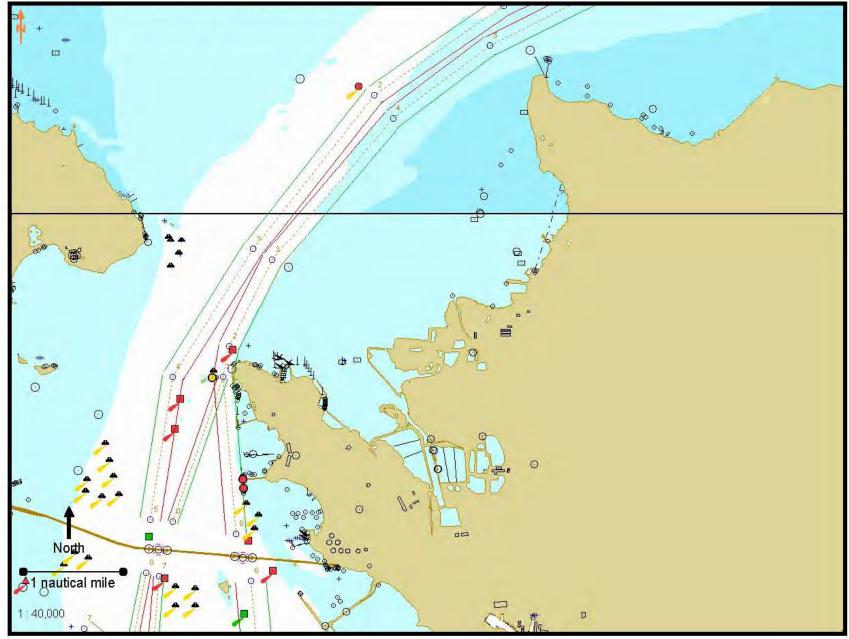

The following chart features are highlighted above.

Route-line: Centerline of the ferry route.

1

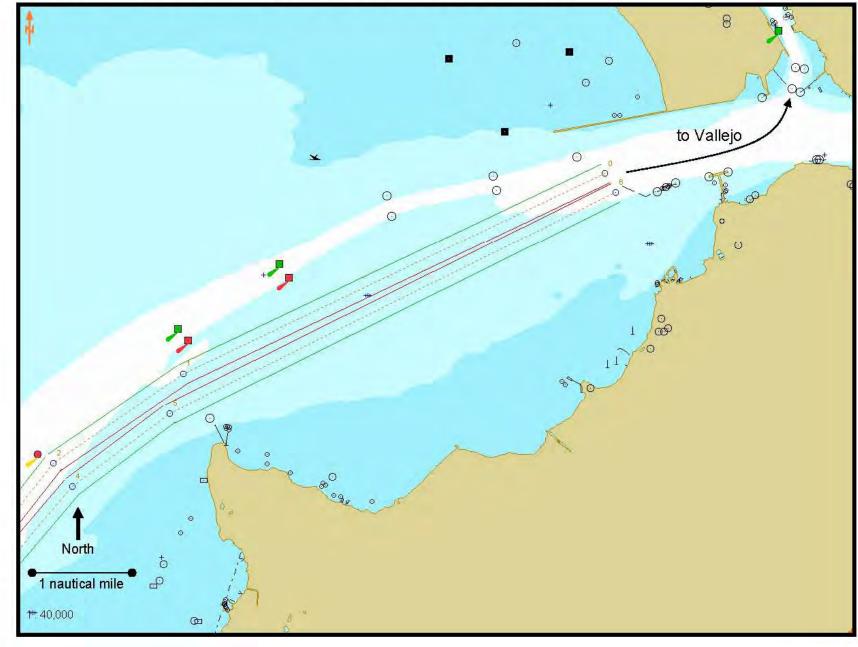

- Cross-track Error: Left and right of route-line tolerance.
- Waypoints: Turns, route crossing points, and communications points.

Central Bay and South San Francisco Bay

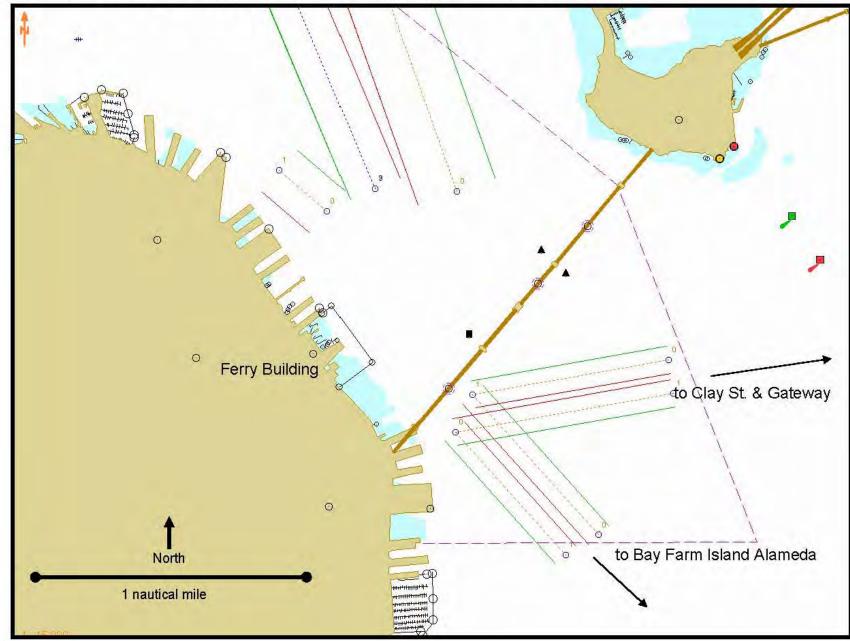


2

North Channel and Southampton Shoal Channel

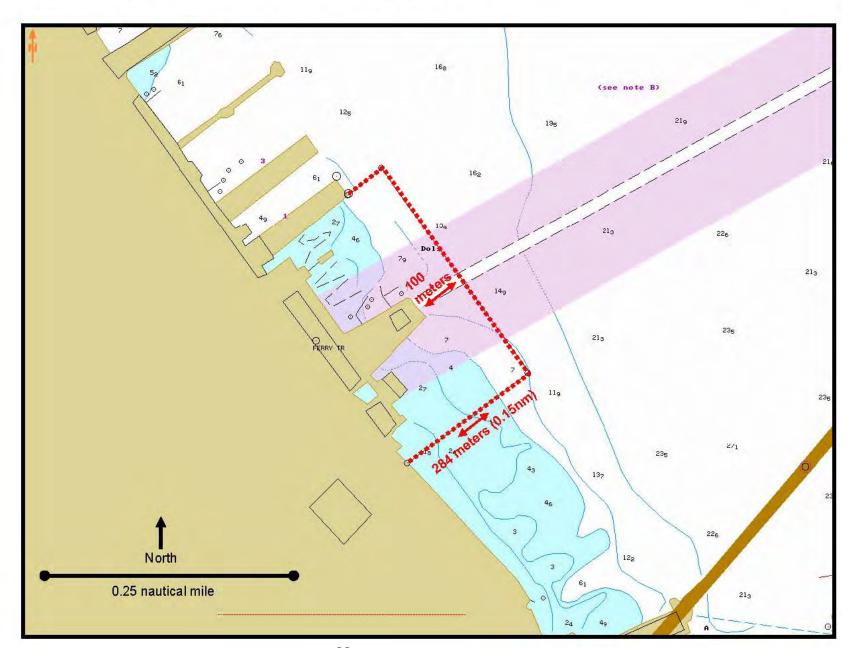


San Pablo Strait Channel



- -

San Pablo Bay and Mare Island Strait



Ferry Building Approach/Departure Zone

6

Ferry Building Maneuvering Area

7

Source and Contact Information

Diagrams are screen print files from vector-based electronic nautical charts (ENCs).

Additional lines and labels were added to the screen print files for emphasis and clarity.

For more information contact:

Scott Humphrey Training Director Sector San Francisco Vessel Traffic Service Phone: +1 415 399 7444 Email: scott.humphrey@uscg.mil

<u>Communication Procedures to Improve Safety During Bunker Barge</u> <u>Transfer Operations Alongside Container Vessels</u>

Container Vessel Bunker Barge Safety Program and Delivery Notice. This document outlines the process for essential communication between the agents, bunker barge operators (tankermen) and terminal's Marine Department to ensure a safe and productive work environment. The Container Operator has adopted this Best Management Practices Program and has instituted it to assist all parties involved in the vessel operations when vessel bunkering is involved in the operation.

The "Bunker Delivery Notice" appears at the end of this section. The Agent will e-mail the notice to the Ship, Terminal and the Bunker Barge operator prior to the stevedoring operation. The terminal, ship and barge operator will reply to the E-mail by including the contact phone/cell number of the person working that vessel/shift. This will be the cross check that all parties are aware of during a planned bunkering operation.

Essential Communications: Contact between the Tankerman and Terminal

• The Bunker Barge Operator (Tankerman/Person in Charge (PIC)) must contact the Designated Facility Contact prior to beginning the barge operation.

• This will allow the Tankerman/PIC to learn the planned stevedore operation in the CFS/CLO and highlight any possible conflicts. (A Check Sheet shall be used for this function.)

• The Bunker Barge representative (Tankerman/PIC), must communicate with the Designated Facility Contact, and Chief Engineer/Chief Mate, (vessel PIC) prior to beginning the barge operation. This will allow the Tankerman to learn the planned stevedore operation and highlight any possible conflicts so they may be eliminated.

Essential Communications: Tankerman Check Sheet

- a. What are the bay designations directly forward and aft of the house on this vessel that overlap the bunker barge?
- b. Is there any planned loading, discharging, or lashing in these bays?
- c. When does the terminal plan to work these bays?
- d. Is any of the work in these bays going to extend into the two or three offshore positions?
- e. Can these positions be worked in a specific time frame so possible conflicts are avoided?
- f. What time periods is the stevedore going to shut down cargo operations for breaks, lunch, etc.?

Understanding the Bunkering Process #1

- Vessels contract for Bunkers
 - Oil Companies notify barge operators

– Agents coordinate delivery notifications with barge operators and terminals

- Bunker Barge arrival time and duration of pumping is established

Understanding the Bunkering Process #2

- Vessel Arrives for Cargo Operations
- Agent Coordinates bunker barge arrival
- Terminal plans operations
- Cargo Flow Sheet or Crane letter of Operations (CFS or CLO) is prepared
 - Outlines what cargo is to be moved in what sequence
 - Terminal will plan around bunker operations if possible

• Terminal gives CFS/CLO to Agent to pass to Chief Engineer/PIC and Tankerman/PIC

Understanding the Bunkering Process #3

- Bunker Barge Arrives for Bunker Ops
 - Optimal placement to minimize exposure.
 - Vessel insures BUNKER OPERATION SIGN is posted.
 - DOI is signed by Chief Engineer/PIC and Tankerman/PIC.
 - Tankerman/PIC /Chief Mate/Chief Engineer/PIC will have a copy of Cargo Flow Sheet or Crane letter (CFS/CLO).
- Tankerman/PIC should understand what cargo adjacent to the barge is to be handled and when.
- Tankerman/PIC shall have contact with the vessel Superintendent at all times.

Understanding the Bunkering Process #4

- Vessel cargo operations commence.
 - Lashers sent aboard to unlash containers.
 - Crane lowered over hold/hatch to be worked.
- Work commences in accordance with CFS/CLO
 - Lashers sent aboard to re-lash containers
- Bunker operations could start before, during or after cargo operations

-Tankerman/PIC, Chief Mate & Superintendent must understand where the stevedoreoperator is relative to the Cargo Flow Sheet or Crane letter and the bunkering process.

Area or Zone of Concern

• Tankerman/PIC, Terminal Personnel, (Superintendents, Foremen, Lashers, Crane Operators) and Vessel Personnel (Chief Mate and Engineer/PIC) all must be mindful of and take particular care when lashing or cargo operations take place in the outer three stacks of containers in bays adjacent to the bunker barge if the transfer is in progress.

Essential Communications: Bunker Delivery Notice

• To inform all concerned parties of the planned bunkering operations, the Vessel Agent (or other carrier assigned representative), will complete a "Bunker Delivery Notice".

• The Agent will forward the notice by E-mail to BOTH the terminal and the bunker barge operator prior to the start of any stevedoring operation.

Post Incident Response

• It is expected that the Tankerman will be alert to the crane working near the barge and the cargoflow that has been planned.

• It is expected that the Tankerman/PIC will determine the proper action to take regarding oil transfer process should any incident occur which affects the safety of the operation.

• Any incident will require direct communications between the parties involved who shall be readily available. This will allow for adjustments to working plans to correct conflicts.

Long Term Incident Resolution

• It is expected that the Operations Department's management personnel, vessel representative, and the barge operator will discuss mutually agreeable adjustments to minimize Tankerman exposures that may be determined as the result of the incident and the post incident investigation.

• Ideas and lessons learned will be shared among all parties including the other Port Terminals.

Adopted February 2009.

Bunker Delivery Notice

Date:	Port:	
Vessel:	Voyage:	
Reference #:		
Bunker Barge Co.		
& Phone:		
Name of Bunker Barge:		
Name of Bunker Barge PIC:		
Contact Phone # of Barge PIC:		
Bunker Barge Emergency Contact #:		
Amount and type to be bunkered:		
Delivery Time of Bunkers:		
Location of Delivery of Bunkers:		
Bunker Barge to Land Side to as Vessel (select Port or Starboard):	Port	or Starboard
Estimated duration of bunker delivery:		
Designated Facility Contact:		
Terminal Emergency Phone #:		
Name of Vessel PIC for bunkers:		
Telephone number of vessel:		
Location of Bunker Manifold/Riser:		
Agent for Vessel:		
Agent Cell Phone #:		
Agent 24 Hour Contact #:		

SAFE BUNKERING OPERATIONS ALONGSIDE OAKLAND BERTHS 35, 37 and 55-59

The following best practices are in addition to "Recommended Best Practices for Safe Bunkering Operations Alongside Cargo Vessels".

1. Prior to arrival of the bunker barge alongside the receiving vessel, the tug captain or mate will contact the Marine-Exchange for arrival and departure information for all vessels transiting OOH (Oakland Outer Harbor) or OIH (Oakland Inner Harbor) over the intended duration of the transfer.

2. Following arrival, the tug captain or mate will notify Vessel Traffic to request all vessels to proceed slowly and with caution when passing the bunker barge. (Not to be confused with a minimum wake).

3. The tug will monitor VHF channels 13 and 14 and the channel agreed to in paragraph 6 at all times during the transfer.

4. Tug will remain made fast to the barge at all times during the bunker transfer. The tug will be standing-by with engines running and with a licensed officer in the (operating) wheelhouse when vessels are transiting the immediate area.

5. A minimum of 2 headlines, 2 spring lines and 2 stern lines will be used to secure the tug/barge unit to the vessel. One bow and one stern line will be from the offshore cleat, bitt or chock of the barge.

6. In order to provide direct communications with the barge and tug, the barge or tug will provide the receiving vessel with a walkie talkie for the ship's watch stander who will be stationed at the manifold area to tend the hose and lines.

7. Tug Captain or Mate will obtain from the Pilot Dispatcher the name and unit number of each pilot on vessels transiting the area for possible direct communications. (Pilot list is a useful tool for gathering transit information).

8. Bunker transfer operations will cease when vessels are transiting the immediate area in OOH and OIH.

9. A second man will be stationed on the barge when vessels are transiting the immediate area in OOH and OIH.

10. The pilot of the vessel transiting the area of concern will contact the tug standing by the barge on VHF channel 13 to confirm that the measures noted above have all been met and that the tug is standing by.

BUNKERING -- BEST MARITIME PRACTICES FOR THE STATE OF CALIFORNIA

A. GENERAL INFORMATION

1. The marine waters of California are environmentally sensitive and a precious environmental and economic resource. Bunkering operations, while routine in many parts of the country, do in fact pose risks different than those normally expected of standard shore to ship oil transfer operations. The California Department of Fish and Game (DFG), Office of Spill Prevention and Response (OSPR), and representatives of the shipping and petroleum industry have jointly developed the following guidelines to address those risks and ensure safe bunkering operations in the State of California. They recognize that the *safe* transfer of fuel oil into a vessel requires diligence, safety consciousness and the use of proper procedures. Safe bunkering is the product of good communication, proper crew training and compliance with international, federal, state and local laws including but not limited to;

"Any owner, operator, or person-in-charge of an onshore or offshore facility or vessel over which the U.S. has jurisdiction (i.e., a U.S. vessel or a facility or foreign vessel in U.S. waters) from which oil or an EPA designated hazardous substance is discharged in "such quantities as may be harmful" into navigable waters of the U.S., upon the adjoining shorelines, into contiguous zone waters, in connection with activities under the OSCLA or the DPA, or that may affect natural resources under exclusive U.S. management authority, is subject to a civil penalty assessment separate from any other civil or criminal penalty or liability imposed by the Federal Water Pollution Control Act (FWPCA) (except in the case of certain EPA permit related discharges). This act prescribes that a civil penalty of not more than \$5,000 for each offense shall be assessed. The FWPCA also requires that the person-in-charge of the vessel or facility must, as soon as acquiring knowledge of any discharge of "such quantities as maybe harmful" of oil or reportable quantity of hazardous substance, immediately notify the appropriate agency (the Coast Guard). The NRC has been identified as the primary location for receiving reports of oil discharges or hazardous substances releases. When the NRC cannot be contacted, 33 CFR 153.203 lists other agencies that may be notified. Failure to give immediate notice makes the responsible person subject to criminal penalties of not more than \$10,000 or a year's imprisonment, or both. Masters, licensed officers and operators, and other persons certificated by the Coast Guard may also be subject to suspension and revocation (S&R) proceedings conducted under the authority of 46 U.S.C. Chapter 77 and 46 CFR 5. Discharges may also result in other civil penalty and criminal fine provisions under Section 309 of the FWPCA, the Rivers and Harbors Act 99 (the Refuse Act), and the APPS 1980."

(Marine Safety Manual COMDTINST M16000.6, 1.E.7 p. 1-24-25)

- 2. Bunkering Operations within California waters are subject to U.S. Coast Guard regulations, Title 33 Code Federal Regulations, Parts 155 and 156, and California Code of Regulations (CCR) *, Title 14, Chapter 3, Subchapter 6. These regulations are listed in paragraph 7 below. Beyond the regulations, the guidelines below represent the cooperative efforts of OSPR and stakeholders to develop the best way to further mitigate risks to the environment during bunkering operations. As such, it is expected that industry members follow them, educate and enforce them among industry groups and make recommendations to OSPR, and the appropriate local Harbor Safety Committees as changes are needed. Vessels intending to conduct bunkering operations while at anchor should also carefully review the guidance in the following additional best maritime practice.
- 3. Some bunkering operations are conducted alongside vessels at berth and, in the case of container vessels, may be conducted simultaneously with container operations. This adds some additional risk to bunkering operations and the personnel involved for which additional precautions are necessary. The procedures associated with these bunkering operations are covered in the Harbor Safety Plans.
- 4. The OSPR and the U.S. Coast Guard inspectors frequently monitors fuel/oil transfer operations throughout all of California's harbors and bays based on the level of risk, amount of fuel/oil, familiarity with company operations, procedures and track records. Either agency may stop any bunkering operation or prohibit planned operations due to safety concerns or unacceptable risk.
- 5. The OSPR will periodically review the safety record of bunkering operations and work with the Harbor Safety Committees to determine if changes are needed to promote safety. Changes could include additional best maritime practices or a formal regulatory initiative.
- 6. **Definitions**: In addition to the terms defined in applicable federal regulations, the following definitions apply:
 - a. Bunkering: The transfer of petroleum base products from one vessel to another vessel for the purpose of replenishing fuel for vessel propulsion, hotel services or machinery lubrication while at anchor or dockside.
 - b. Receiving Vessel: The vessel receiving the fuel or lubes in a bunkering operation.
 - c. Delivering vessel: The vessel delivering the fuel or lubes in a bunkering operation.

- d. Moderate Weather: Sustained winds from 21 to 33 knots or higher gusts (Small Craft Advisory).
- e. Heavy Weather: Sustained winds from 34 to 47 knots or higher gusts (Gale Warnings).
- 7. <u>Regulations</u>: Bunkering operations must be conducted in strict accordance with the letter and intent of all regulations. If there is a conflict, real or perceived, between the regulations and the guidelines in this document, then the regulations shall take precedence. However, any such conflict should be reported to the applicable Harbor Safety Committee. In the state of California Bunkering operations fall under following regulations:
 - a. 33 CFR 152 Notice of Discharge and Removal of Discharged Oil*
 - b. 33 CFR 155 Oil or Hazardous Material Pollution Prevention Regulations for Vessels*
 - c. 33 CFR 156 Oil and Hazardous Material Transfer Operations*
 - d. 46 CFR 30-40 Tank Vessels*
 - e. CCR Title 14, Chapter 3, Subchapter 6 Oil Transfer and Vessel Operations*

Additionally, bunkering activities may also be subject to local regulations and terminal requirements and or guidelines. As laws and regulations may change from time to time, a vessel operator should check with their agent and/or local authorities for the most current regulations and requirements.

B. <u>Best Maritime Practices – BUNKERING</u>

Maritime safety is a people process. Virtually every marine accident or oil spill is the result of human error. The below Best Maritime Practices have been developed to further mitigate the risk of spills to deck and or water. It is well-trained people working conscientiously together that make safe seamanship a reality.

1. <u>Prior to Arrival of the Receiving Vessel</u>

a. Pre-Arrival Information (Receiving Vessel)

Prior to bunkering, the following information will be provided to the delivering barge company by the receiving vessel:

- Estimated time of arrival.
- Location in port where bunkering will take place.
- Name and Contact information for the vessel's QI (Qualified Individual).
- Copy of California Vessel Oil Spill Contingency Plan Approval Letter.
- Confirmation of Federal and State Certificates of Financial Responsibility ('COFR').

- Verification of the OSPR required spill kit onboard the ship.
- Location of bunker station
 - o distance forward from the vessel's stern.
 - o distance of bunker connection from water line to rail.
 - o distance of bunker connection from rail.
 - o bunker manifold flange size and bolt configuration.
 - Side of vessel, port or starboard.
- Complete the Pre-Arrival Check List.
- Acknowledgement that Hot Work and other restricted activity will not be conducted until the delivering vessel has departed.

b. Notifications *

The ship should make notifications to their OSRO and their twenty-four hour shoreside QI in the event they are contracted through 3rd party services.

c. Identify Person-In-Charge*

The first step in safe bunkering is to identify the vessel's Person-In-Charge ('PIC'), who is responsible for the bunkering operation. They must be a licensed or authorized master, mate or engineer.

d. Identify the Oil Transfer Procedures

The PIC must identify and be familiar with the vessel's oil transfer procedures. *Oil Transfer Procedures shall be prominently posted for easy reference!*

Transfer Procedures shall include;

- The location of pipelines, valves, vents and overflows,
- The numbers and duties of people assigned to the transfer operation,
- All relevant procedures before, during and following oil transfer,
- Detail critical steps for communication,
- Steps for topping off tanks, and
- Steps for initiating an emergency shutdown.
- Weather and sea state limits that require transfer shutdown.

e. Designate Key Transfer Personnel *

The Person-In-Charge is responsible for ensuring an adequate number of personnel are ready and available to safely execute the transfer process. While the number may vary with the ship, weather, and port there shall be no less

than 3 individuals on the receiving vessel assigned to the operation, and these individuals shall have no other assigned duties during the transfer process.

- f. Develop a Pre-Loading Plan (Receiving Vessel) Pre-Loading Plan Includes;
 - Tanks and Capacities
 - Oil Level and Type
 - Expected Final Tank Gauges and Percentage of Tank Capacity
 - Tank Loading Sequence
 - Monitoring Procedures monitoring includes the fuel oil transfer as well as tank levels and valve alignments.
 - Post a Completed Load Plan
 - Max pressure at ships manifold
 - Max rate of transfer
 - Personnel shall include:
 - Person-In-Charge (PIC) Responsible for the transfer operation.*
 - Point-of-Transfer Watch This person remains at the connecting point between the transferring and receiving vessels throughout the transfer process.
 - Deck Rover Watch Responsible for monitoring the deck and over the sides for spills; should be aware of all the source locations for a potential release of oil.
 - Additional Personnel Good seamanship dictates that there will be circumstances that require the receiving vessel to assign additional personnel. They may include but are not limited to the following.
 - Monitoring of multiple tank levels at different locations.
 - Topping of tanks.
 - Need for an anchor watch.
 - Rain or other environmental circumstances that affect the operation.
 - The PIC will ensure that all personnel on their vessel assigned to the transfer operation are well rested and within their work hour limitations. Even a crewmember within their work hour limitations can be fatigued due to a number of circumstances. A fatigued crewmember should be relieved by a rested crewmember.

g. Pre-Arrival Training

A good bunkering operation begins with proper preparation. Everybody who is involved in the training session should be told everything about the bunker operation. Not more than 48 hours prior to arrival, all members of the crew that may be called upon to participate in the loading operation shall attend a training session. Training shall include:

- Review Bunkering -- Best Maritime Practices (BMP)
- Review Vessel Specific Transfer Procedures
- Review Crew Roles and Responsibilities
- Review Pre-Loading Plans
- Communication Procedures
- Stop the Transfer Responsibility

Ensure everyone involved in the bunkering operation knows he or she has the responsibility to stop the transfer process at any time, should anything appear to be out of order.

If watches will change during the bunkering operation, include relief personnel in training session and the pre-loading plan.

A log entry shall be made of the crewmembers, their rating and the time of the training session.

2. Bunkering Operations *

a. Prepare Deck and Receiving Areas

To include, but may not be limited to the following:

- Close and secure all required hatches, doors and portholes.
- Seal all scuppers and drains from which overflowing oil might spill over the side of the vessel.
- Ensure a well-lit receiving area to provide for efficiency, safety and crew alertness.
- Post all proper warning signs and signals.
- Make a visual inspection of all the applicable equipment on both the receiving and delivering vessels.

b. Mooring Equipment *

The delivering vessel shall be responsible for the safe mooring of their vessel alongside the receiving vessel. They shall use fenders of sufficient size and type to prevent steel to steel contact between the two vessels. Mooring lines will be of sufficient size and type to hold the delivering vessel alongside the receiving vessel during the maximum expected tidal, wave, and wind conditions.

c. Provide Safe Access Between Vessels

The receiving vessel must provide safe access to and from the barge utilizing a gangway or an appropriate accommodation ladder, in order to facilitate face to face communications between the receiving and the delivering vessels for purposes for a pre-transfer conference and other required communications.

Where safe access cannot be provided an alternate method of facilitating a face to face conference must meet the following guidelines and a notification will be made to OSPR and USCG by the delivering vessel;

- Both the receiving vessel and delivering vessel's PICs will still execute a conference in sight of each other with a clear method of communication in order to cover all items outlined in the pre-transfer document as well as the Declaration of Inspection.*
- Direct communications between PIC's will be made in order to alert the delivering vessel when the receiving vessel is topping off, or switching between tanks.*
- Reiterate the need for a 10 minute standby notice before any tank switches.
- Direct communications between both PICs no less than every 20 minutes.

d. Establish Communications *

The receiving vessel and delivering vessel shall agree on the communications to be used during the process. These include:

- Coordinating radio frequencies,
- Common English phrases,
- Proper hand signals, and
- Use of air horns.

Ensure everyone involved knows he or she has the responsibility to stop the transfer process at any time, should anything appear to be out of order

e. Conduct a Pre-Transfer Conference

Each pre-transfer conference is unique. Different people, different languages, different fuel requirements, different conditions all play a role in determining the content and structure of the conference. Out of these differences, a common understanding must be established and a common process used. The pre-transfer conference must include the following:

• Be conducted in English.

A vessel agent can arrange for a translator or interpreter. If one is necessary they must remain for the duration of the transfer operation.

- Be conducted face to face. (Except as allowed for in Section c.)
- Thoroughly review the Declaration of Inspection (DOI) and Load Plans, with both PICs discussing and initialing each item including:*
 - Products, Sequence and Flow rate of Oil*
 - Key Procedures*
 - Identify Key Personnel*
 - Watch Changes*
 - MSDS information for the product(s) to be transferred*
 - Notification of Shutdown or topping off procedures.*

f. <u>Connect Oil Transfer Hose*</u>

Be sure to handle the hose carefully. It may still contain oil from a previous transfer. The receiving vessel shall:

- Check the hose for obvious defects.
- Check the hose support and lead. The weight of the hose should not put undue strain on the manifold, rail or other fittings.
- Use a new unused gasket.
- Tighten all bolts, evenly, with a matching bolt in every hole.
- Double check alignment of all valves.
- Ensure containments are kept free and clear of debris and rain water.

g. <u>Complete and Sign the Declaration of Inspection (DOI)*</u>

Both vessels must keep a copy of the DOI for 30 days, along with a copy of the vessels load plan.

h. Begin Fuel Delivery

- Fuel flow should commence at a slow rate.
- All tanks should be sounded to ensure fuel is loading into the designated tanks and not into the wrong tanks.
- The pressure should be monitored on the delivering and the receiving vessel's manifold. A high pressure reading could signal a blockage or improper alignment.
- Receiving vessel must alert barge crew at least 10 minutes before changing tanks, topping off tanks, or securing the loading operation.
- The delivering vessel and receiving vessel should compare the amount of fuel transferred between each vessel and at regular

intervals. If upon comparison in the amount of fuel transferred, a discrepancy of concern is identified, the transfer should be secured until the discrepancy is rectified.

- Bunker transfer rate should be compared at regular intervals. This practice will help to avoid tank overfills and enable a PIC to estimate the time for topping off tank(s) or stripping of tank(s), tank switching and time of completion.
- Maintain constant communication. A regular schedule of communications should be established. Not to exceed 20 minute intervals, a status report exchange between the receiving vessel and delivering vessel shall take place*. This is in addition to the notifications above. Failure to receive a response from any effort to communicate shall result in an immediate shutdown of operations.
- Verify operation and accuracy of gauging systems.
- Test and verify bunker tanks alarm, settings and overfill alarm units.*
- Bunker tanks which have been secured should be checked frequently during the remaining loading operations to avoid an overflow.

i. Securing Bunker Operations and Disconnecting Transfer Hose

Upon securing of bunker operations;

- Check to make sure there is no flow at the manifold before closing the bunker manifold valve.
- The PIC's on both vessels should check fuel tank levels and verify all valves are securely closed.
- The receiving and delivering vessel's crews should verify that the hose is depressurized and drained back into the barge.
- The hose connection shall be blanked and bolted with a matching bolt in every hole. * It should be cleaned of any surface oil before being passed back to the delivery vessel.
- Hot Work and other restricted activity should remain secured until the delivering vessel has departed.

j. Number of Vessels Involved

A receiving vessel may receive bunkers and lubricating oils from two separate delivering vessels at the same time, provided:

- Each transfer has a separate Person in Charge ('PIC') unless otherwise approved by the Coast Guard Captain of the Port.
- That each system is completely separate from the other or is otherwise effectively isolated or segregated by means of blank (spectacle) flanges which may be visually verified.

3. Should a Spill Occur

- a. STOP THE PRODUCT FLOW
 - Notify the barge immediately to Shut Down and inform the barge of what happened and whether or not the flow has been stopped.
 - Delivery vessel to inform receiving vessel when transfer is stopped.
 - Bunker manifolds to be shut.
 - When shut down, advise delivery vessel if outflow has stopped.
 - Barge to commence deploying boom. (Even if release is not believed to have reached the water).

b. WARN PERSONNEL

• Ensure the personnel on the ship, barge and shore are aware of the spill and are taking the necessary precautions to remain safe and secure the vessel.

c. <u>SHUT OFF IGNITION SOURCES</u>

• Motors, electrical circuits, open flames, welding, etc.

d. CONTAIN / CONTROL SPILL

- Ensure the barge is deploying their boom
- Check ship's containment to ensure it is effective and sufficient

e. <u>MAKE APPROPRIATE NOTIFICATIONS AS PER VESSEL OIL SPILL CONTINGENCY</u> <u>PLAN*</u>

- CCR, Title 14, Chapter 3, §817.03(g) and §827.02(d), Shall make notification within 30 minutes, after discovery of a discharge or threatened discharge of oil into marine water. Required notifications shall not be construed as requiring notification before response.
- Communicate the incident to your company QI/OSRO*
 - Injuries
 - Damage
 - Extent of release
 - Resources required
- State of California's CalEMA*
- National Response Center*

f. Notify U.S. Coast Guard Vessel Traffic Service (VTS)

4. Port Specific Items

- a. <u>Heavy Weather</u>
- <u>Wind</u>: Vessels will not come alongside in preparation for bunkering at anchor or pier side if sustained winds are at or exceed 34 knots. If bunkering operations have already begun when sustained wind reach 28 knots personnel in charge of bunkering operations will continuously monitor environmental conditions and take any additional measures necessary to reduce risk of injury, vessel damage

or pollution, and prepare for worsening weather. When sustained winds reach 34 knots bunkering operations will cease and hoses will be drained and disconnected.

- <u>Seas</u>: For bunkering operations from one vessel to another vessel while at anchor, operations will cease, and hoses drained and disconnected when waves or swells reach 5 ft. The wind and sea conditions criteria have been developed with industry input and are used by operating companies in California. These standards are based on historical observations and experience in handling these vessels under the above prevailing conditions. Heightened safety and precaution should be taken during short interval wave periods.
- Electrical Strom: When an electrical storm is anticipated in the vicinity of a bunker transfer, shutdown and secure transfer operations. All tank openings and ventilation valves must be closed, including any bypass valve fitted on the tank venting system.*
- <u>Sheltered Waterway</u>: The aforementioned wind and sea guidelines may not be applicable when a receiving vessel is being bunkered at a wharf or pier in a sheltered waterway. The criteria for securing a bunkering operation in these types of locations would be dependent upon adverse movement of either the receiving vessel or delivering vessel caused by the prevailing wind or sea conditions.
- <u>**Tug Availability**</u>: During bunkering operations with the potential to have adverse weather conditions involving vessels at anchor, at least one tug will remain ready to render assistance during the entire bunkering operation. The attending tug(s) must have sufficient horsepower to maneuver and control at least the delivering vessel involved in the bunkering operation under all conditions.

5. Ongoing Compliance and Continual Improvement

a. Drills and Exercises:*

Equipment deployment drills shall be conducted twice a year by each bunker delivery company in each port. These drills shall be conducted in an environment and under conditions similar to those that would be encountered during an actual oil transfers operation.

- The ability to deploy oil spill boom shall be drilled to demonstrate proficiency to the Administrator.
- At least one of these drills will be monitored by OSPR staff, and any documentation generated, including the list of the crew participating in the drill, will be submitted to OSPR. OSPR's Drills and Exercises Unit must be contacted in advance to schedule these monitored equipment deployment drills.

- If oil spill boom has been successfully deployed during a transfer operation, this may be counted toward the twice a year equipment deployment requirement. Any relevant documentation generated, including the list of the crew participating in the deployment, will be submitted to OSPR.
- Vessel transfer units that utilize the services of an OSRO for standby booming, that have been rated to deploy the containment equipment, are not required to meet the twice yearly equipment deployment drills.
- In addition to these scheduled equipment deployment drills, the Administrator may also require the successful completion of an announced or unannounced equipment deployment drill.

The vessel owner/operator shall maintain adequate records of drills and exercises, for a period of at least three years, to include records of any off-vessel drills and exercises (i.e., drills and exercise not held aboard the vessel) of the spill response organization and resources identified in the contingency plan. These records shall be maintained at the United States location of either the Qualified Individual or the vessel owner/operator. Contingency plans should indicate the location of these records. All exercises conducted aboard the vessel shall be documented in the vessel's log.

When the owner/operator possess like boom deployment systems on their vessels, it is adequate to run a drill on one system, as a representative of the entire company.

b. Inspections and Monitoring:*

The OSPR Administrator should carry out an inspection program which shall include the following:

- The Administrator shall conduct a system safety inspection of each delivery vessel engaged in transfer operations in the marine waters of California. Such an inspection should determine whether the vessel is in compliance with equipment, procedures, and other requirements as specified in this Plan.
- Monitoring transfer operations at the transfer site, including monitoring pre-booming requirements.
- Additionally, twice a year equipment deployment drills shall be conducted by the bunker delivery companies in each port to meet the booming requirements.
- The bunker company has successfully demonstrated to the Administrator their ability to deploy and maneuver boom through deployment drills demonstrating the following: sufficient boom, trained personnel and equipment, maintained in a stand-by condition at the point of transfer, such that at least 1200 feet of boom, or an amount sufficient to meet the containment requirements, whichever is greater, can and will be deployed for the most effective containment immediately, but no longer than 30 minutes, after discovery of a spill.

Prior to each transfer operation, the transfer until shall provide, for the duration of the entire transfer operation, either pre-booming or standby booming if the aforementioned requirements are not met. These standards may not reflect the exigencies of actual spill response. However, these standards must be used to determine the amount of equipment and personnel that must be available, in such cases pre-booming may be required.

c. <u>Pre-Booming</u>:*

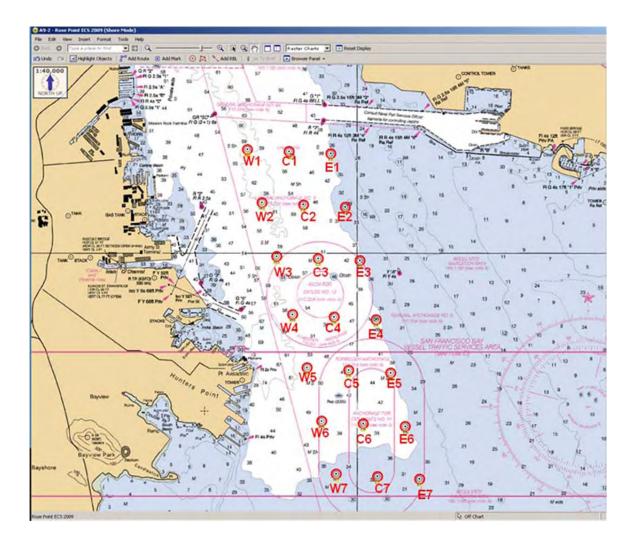
Transfer units must carry or provide at the point of transfer appropriate equipment and supplies for the containment and removal of both persistent oil, and #1 and #2 grade oil spills in water adjacent to the transfer site. For pre-booming, the transfer unit shall deploy boom so as to enclose the water surface area adjacent to the receiving unit which will provide common containment area for:

- Either of the following:
 - The entire receiving unit and the point of transfer; or
 - Those portions of the receiving unit or seawall from which oil may spill into the water.
- Where the hull of the transfer unit or seawall is capable of acting as an effective barrier on the side of the receiving unit, the boom on that side may be deployed so that it provides containment of the receiving unit and the transfer unit or seawall.
- The boom shall be periodically checked and the boom position shall be adjusted as necessary throughout the duration of the transfer; especially during tidal changes and significant wind or wave events, to maintain maximum containment in the event that oil is spilled into the water.

New Anchorage 9 Berth Layout Information Sheet

Twenty-four .1NM (200 yard) Drop Buckets

•


Arranged in three North-South Columns and Eight East/West Rows

Spacing: .6NM north/south (1200 yds) between rows, .45NM east/west (900 yds) between lumns

columns

Western-most column is .25 NM (500 yards) from western boundary Northern-most row is .35 NM (700 yards) from the northern boundary Accommodates twenty-four vessels Vessels should strive to let go anchor in center of drop bucket

ANCHORAGE 9 BERTH COORDINATES COORDINATES INDICATE CENTER OF .1NM (200YD) DROP BUCKET Latitude Berth Longitude Western Column W1 37º 46.149'N 122º 21.504'W 37º 45.562'N W2 122º 21.305'W 37º 44.972'N W3 122º 21.104'W W4 37º 44.332'N 122º20.886'W W5 37º 43.747'N 122º 20.688'W W6 37º 43.159'N 122º 20.488'W W7 37º 42.578'N 122º 20.289'W 37º 41.991'N W8 122º 20.092'W Center Column 122° 20.935'W C1 37° 46.125'N C2 37° 45.539'N 122° 20.376'W C3 122° 20.535'W 37° 44.948'N 122° 20.317'W C4 37° 44.305'N C5 37° 43.719'N 122° 20.118'W 37° 43.131'N 122° 19.919'W C6 C7 37° 42.550'N 122° 19.723'W C8 122° 19.524'W 37° 41.961'N Eastern Column E1 37° 46.102'N 122° 20.363'W E2 37° 45.514'N 122° 20.164'W E3 37° 44.925'N 122° 19.963'W 122° 19.742'W E4 37° 44.275'N 122° 19.542'W E5 37° 43.688'N E6 37° 43.101'N 122° 19.343'W E7 37° 42.522'N 122° 19.146'W 37° 41.932'N 122° 18.947'W E8

Harbor Safety Committee Members Members Port Authorities Alternates

Term expire on December 31, 2012

Chris Peterson Chief Wharfinger Port of Oakland 530 Water Street Oakland, California 94607 Phone: (510) 627-1308 Fax: (510) 763-8287 E-mail: cpeterson@portoakland.com

Term expire on January 13, 2014

Michael Williams Development Project Coordinator Port of Richmond 1411 Harbour Way South Richmond, California 94804-3624 Phone: (510) 215-4607 Fax: (510) 233-3105 E-mail: Michael_williams@ci.richmond.ca.us

Term expire on June 9, 2013

Ron Chamberlain Safety and Security Manager Port of Benicia 1997 Elm Road Benicia, California 94510 Phone: (707) 246-4138 Fax: (707) 746-1485 E-mail: rchamberlain@amports.com

Term expire on January 13, 2014

Aaron Golbus Wharfinger Port of San Francisco Pier 1 San Francisco, California 94111 Phone: (415) 274-0521 Fax: (415) 274-0421 E-mail: aaron.golbus@sfport.com R. Mike O'Brien Port Facilities Security Officer Port of Oakland 530 Water Street Oakland, California 94607 Phone: (510) 627-1303 Fax: (510) 835-1641 E-mail: mobrien@portoakland.com

Rick Toft Operations Manager Port of West Sacramento 1110 West Capital Ave., 3rd Floor West Sacramento, California 95691-2717 Phone: (916) 617-4565 Fax: (916) 372-4802 E-mail: rickt@cityofwestsacramento.org

Randy Scott General Manager Port of Benicia 1997 Elm Road Benicia, California 94510 Phone: (707) 745-2394 Fax: (707) 746-1485 E-mail: rscott@amports.com

John M. Davey Maritime Operations Manager Port of San Francisco Pier 1 San Francisco, California 94111 Phone: (415) 274-0522 Fax: (415) 274-0528 E-mail: John.Davey@sfport.com

Members Pleasure Boat Operators

Term expire on June 9, 2013

Margot Brown National Boating Federation 3217 Fiji Lane Alameda, California 94501 Phone: (510) 523-2098 Fax: (510) 523-2098 E-mail: mjbjhb@aol.com

Tanker Operators

Term expire September 7, 2014

Captain Andy Cook Regional Marine Superintendent Chevron Shipping Company LLC 6101 Bollinger Canyon Road, 4481A San Ramon, California 94583-5177 Phone: (510) 242-4613 Fax: (925) 242-3264 E-mail: canp@chevron.com

Tanker or Marine Oil Terminal Operators

Term expire January 12, 2015

Captain Esam Amso West Coast Manager Marine Assurance/Loss Control Valero Marketing and Supply Company 3400 E Second Street Benicia, California 94510-1097 Phone: (707) 745-7205 Fax: (707) 745-7206 E-mail: esam.amso@valero.com

Mike Marcy California Refining External Affairs Tesoro Refining and Marketing Affairs 150 Solano Way Martinez, Calisornia 94553-1465 Phone: (925) 372-3093 Fax: (925) 370-3392 E-mail: geroge.m.marcy@tsocorp.com

Phone: (925) 837-7437 Fax: (925) 837-7491 E-mail: wlneedham@prodigy.net Garrett Huffman

Alternates

William Needham

National Boating Federation

106 Whispering Trees Lane

Danville, California 94526-2427

Richmond Long Wharf Area Operations Coordinator Chevron Shipping Company LLC 841 Chevron Way Richmond, California 94802 Phone: (510) 242-4630 Fax: (510) 242-3264 E-mail: garretthuffman@chevron.com

Members Dry Cargo Operators

Term expire on October 8, 2013

Captain John Cronin Vessel Manager Marine Operations Matson Navigation Company 555 12th Street Oakland, California 94607 Phone: (510) 628-4220 Fax: (510) 986-1970 E-mail: jcronin@matson.com

Term expires on March 3, 2013

John Berge (Vice Chair) Vice President Pacific Merchant Shipping Association 250 Montgomery Street, Suite 700 San Francisco, CA 94104 Phone: (415) 352-0710 Fax: (415) 352-0717 E-mail: jberge@pmsaship.com

Labor Organizations

Term expire on June 13, 2013

Marina V. Secchitano Regional Director Inlandboatmen's Union 450 Harrison Street San Francisco, California 94105 Phone: (415) 896-1224 Fax: (415) 896-1226 E-mail: ibusf@pacbell.net

Alternates

William Nickson Regional General Manager Transmarine Navigation Corporation 1270 Springbrook road, Suite "D" Walnut Creek, California 94597-3941 Phone: (925) 932-3360 Fax: (925) 932-3314 E-mail: b.nickson@transmarine.com

Captain Noapose Fotu Senior Surveyor National Cargo Bureau, Inc. 5901 Christie Ave, Suite 303 Emeryville, CA 94608 Phone: (510) 654-3170 Fax: (510) 654-3171 E-mail: Fotu@natcargo.org

Captain Ray Shipway Branch Agent Int'l Org. of Masters Mates & Pilots 548 Thomas L. Berkley Way Oakland, California 94612-1602 Phone: (415) 543-5694 Fax: (415) 543-2533 E-mail: rshipway@bridgedeck.org

Members Barge Operators

Term expire on June 9, 2013

Rich Smith General Manager Westar Marine Services Pier 50, Shed C San Francisco, California 94107 Phone: (415) 495-3191 Fax: (415) 495-0683 E-mail: westar50c@aol.com

Tug Operators

Term expire on November 23, 2012

Captain Jonathan Mendes General Manager Starlight Marine Services 321 A Avenue Alameda, California 94501 Phone: 510-769-7700 Fax: 510-868-3416 E-mail: jmendes@harleymarine.com

Non-Profit Environmental Organizations

Term expires on January 10, 2013

Deb Self Executive Director San Francisco Bay Keeper 785 Market Street San Francisco, CA 94103 Phone: (415) 856-0444 Fax: (415)856-0443 E-mail: deb@baykeeper.org Bob Gregory Regional Ops Manager, No. California Foss Maritime Company 1316 Canal Blvd. Richmond, California 94804 Phone: (510) 307-7825 Fax: (510) 307-7821 E-mail: bob@foss.com

Alternates

Shawn Bennett General Manager BayDelta Maritime, Inc. Pier #17, The Embarcadero San Francisco, California 94111 Phone: (415) 693-5800 Fax: (415)781-2344 E-mail: shawn@baydeltamaritime.com

Carol Keiper Marine Ecologist Oikonos Ecosystem Knowledge P.O. Box 1392 Benicia, CA 94510 Phone: (707) 208-2255 (cell)

E-mail: carol@oikonos.org

Members Ferry Operators

Term expires on July 12, 2012

Captain Pat Murphy Operations Manager Blue & Gold Fleet Pier 41 Marine Terminal San Francisco, CA 94133 Phone: (415)705-8200 Fax: (415)705-5429 E-mail: patrick@blueandgoldfleet.com

Alternates

Captain Peter Belden Operations Manager Baylink Ferry / Blue & Gold Fleet 477 Waterfront Avenu Vallejo, CA 94592 Phone: (415) 850-0413 Fax: E-mail: Peter@baylinkferry.com

Pilots Organizations

Term expire on June 9, 2013

Captain Bruce Horton Ship Pilot San Francisco Bar Pilots Pier 9, East End San Francisco, California 94111 Phone: 415-362-0941 Fax: 415-982-4721 E-mail: b.horton@sfbarpilots.com

Commercial Fishing Representative

Term expires on Septermber 7, 2014

Jim Anderson CA Dungeness Crab Task Force 60 Lowell Street Redwood City, California 94062 Phone: (415) 519-1622 e-mail: jimmydawn13@gimail.com Captain George Livingstone Ship Pilot San Francisco Bar Pilots Pier 9, East End San Francisco, California 94111 Phone: 415-362-0941 Fax: 415-982-4721 E-mail: g.livingstone@sfbarpilots.com

Members

Alternates

San Francisco Bay Conservation and Development Commission

Term expires on July 1, 2014

Jim McGrath Commissioner BCDC 2301 Russell Street Berkeley, California 94705 Phone: (510) 848-8071 Fax: E-mail: macmcgrath@comcast.net Linda Scourtis Coastal Planner BCDC 50 California Street, Suite 2600 San Francisco, California 94111 Phone: (415)352-3644 Fax: (415) 352-3606 E-mail: lindas@bcdc.ca.gov

Maritime Information Exchange Community

Term expire September 7, 2014

Captain Lynn Korwatch (Chair) Executive Director Marine Exchange of the San Francisco Bay Region Fort Mason Center Building B, Suite 325 San Francsico, California 94123 Phone: (415) 441-5045 Fax: (415) 441-1025 E-mail: korwatch@sfmx.org

Federal Government Members

U.S. Coast Guard

Captain Cyndi Stowe Commander Sector San Francisco U.S. Coast Guard 1 Yerba Buena Island San Francisco, California 94130-9309 Phone: (415) 399-3410 Fax: (415) 399-3579 E-mail: cynthia.l.stowe@uscq.mil Alan Steinbrugge Director, External Operations Marine Exchange of the San Francisco Bay Fort Mason Center Building B, Suite 325 San Francsico, California 94123 Phone: (415) 441-6600 Fax: (415) 441-1025 E-mail: alan@sfmx.org

Harbor Safety Committee Members Members Army Corps of Engineers Alternates

Lt.Col. Torrey DiCiro Commander U.S. Army Corps of Engineers, S.F. District 1455 Market Street San Francisco, California 94103-1398 Phone: (415) 503-6700 Fax: (415) 503-6691 E-mail: torrey.diciro@usace.army.mil

U.S. Navy

Vacant

Vacant

National Oceanic and Atmospheric Administration - National Ocean Service

Gerry Wheaton National Ocean Service Coast Survey Representative for California 400 Gigling Rd. Seaside, CA 93955-6771 Phone: (831) 583-2365 x129 Fax: (831) 583-2366 E-mail: Gerry.Wheaton@noaa.gov Rebecca Smyth California Regional Coordinator NOAA Ocean Service 45 Fremont Street, Suite 2000 San Francisco, California 94105-2219 Phone: 415-904-5251 Fax: 415-904-5400 E-mail: Rebecca.Smyth@noaa.gov

HARBOR SAFETY COMMITTEE OF THE SAN FRANCISCO BAY REGION INCLUDING THE PORTS OF SACRAMENTO AND STOCKTON

BYLAWS

Article I: Name

Section 1. The Harbor Safety Committee of the San Francisco, San Pablo and Suisun Bays, including the Ports of Sacramento and Stockton (hereinafter referred to as the Committee).

Article II: Purpose

Section 1. The Committee is established pursuant to Section 8670.23 of the Government Code and Title 14, California Code of Regulations, Sections 800-802; and is responsible for planning for the safe navigation and operation of tank ships, tank barges, and other vessels within the harbor, and making recommendations to the Administrator of the Office of Spill Prevention and Response (OSPR), hereinafter referred to as the Administrator.

Article III: Membership

Section 1. Membership Categories

- a. Members shall be selected from local representatives of organizations or companies in the San Francisco Bay Area region (including the Ports of Sacramento and Stockton) whenever possible.
 - b. The Committee shall consist of members appointed by the Administrator as follows:

1. Four designees representing Port authorities: One representative shall be selected from the Port of San Francisco and one from the Port of Oakland. The other two representatives shall be selected from any two of the remaining ports: Richmond, Redwood City, Benicia, Stockton or Sacramento;

2. One representative of tank ship operators, and one representative of either a tank ship operator or a marine oil terminal operator;

3. One designee of the San Francisco Bar Pilots Association;

4. Two representatives of dry cargo vessel operators;

5. One representative of commercial fishing;

6. One representative of pleasure boat operators;

7. One representative of a recognized nonprofit environmental organization that has as a purpose the protection of marine resources;

8. One designee of the San Francisco Bay Conservation and Development Commission;

9. One representative from a recognized labor organization involved with waterborne operations of vessels;

10. One representative of tug operators and one representative of tank barge operators, neither of whom shall also be engaged in the business of operating either tank ships or dry cargo vessels.

11. One designee from each of the following: Captain of the Port from the U.S. Coast Guard; U.S. Army Corps of Engineers, U.S. National Oceanic and Atmospheric Administration (NOAA), and the U.S. Navy, to the extent that each consents to participate on the Committee as a non appointed member.

c. Appointees filling membership categories identified in items b1 through b10, above, are specified as appointed members.

Section 2. Membership Qualifications

The members appointed from the categories listed in Section 1b (2), (3), (4), and (10) above shall have navigational expertise. An individual is considered to have navigational expertise if the individual meets any of the following conditions:

- a. Has held or is presently holding a Coast Guard Merchant Marine Deck Officer's license;
- b. Has held or is presently holding a position on a commercial vessel that includes navigational responsibility;
- c. Has held or is presently holding a shore side position with direct operational control of vessels;
- d. Has held or is currently holding a position having responsibilities relating to the safe navigation of vessels.

Section 3. At-Large Members

Appendix C

The Harbor Safety Committee may petition the Administrator to request up to five atlarge membership categories that are needed to conduct the Harbor Safety Committee's business and which reflect the make-up of the local maritime community. One at-large member shall represent ferry operators who shall have navigational expertise as defined in Section 2, <u>above</u>, and who is specified to be an appointed member consistent with Section 1c, above. The Committee may also petition the Administrator for the removal of any at-large membership category. The approval of such petitions shall be at the sole discretion of the Administrator.

Section 4. Term of Membership for Appointed Members and their Alternates

- a. A member shall be appointed for a three-year term.
- b. A member's appointment shall be terminated as a result of any of the following circumstances:
 - 1. The member retires from, or otherwise leaves employment under which he was appointed. Members who leave their employer may, if qualified under their new employment, apply for the seat they vacated or, if qualified, apply for another Committee seat that becomes vacant.
 - 2. The member undergoes a change in work responsibilities, which alters the constituency that he represents, or alters his qualifications for the position.
 - 3. The member voluntarily resigns for any reason.
 - 4. A member is removed by the Administrator for any reason under Section 7, below.
- c. A member impacted by any of the conditions identified in items 1-4 above is expected to submit his resignation to the Chair (with a copy to the Administrator) within five working days.
- d. Any incumbent completing his three-year term may re-apply.
- e. Except as noted in Section 5c, below, an alternate's term expires when the primary member leaves service for any reason.

Section 5. Alternates for Appointed Members

- a. The alternate representative shall be appointed and sworn by the Administrator in a manner similar to the primary member. Only one alternate shall be appointed for each primary member, and only the appointed alternate is accorded proxy powers. The alternate shall be selected from the same membership category as the primary member, and shall meet the same qualifications. The appointed alternate may vote, participate in, or take any other action on behalf of the primary member consistent with the Committee's bylaws and any applicable statutory or regulatory provisions.
- b. An alternate may vote only in the absence of the primary member.
- c. When a primary member resigns or is removed, his alternate may continue to serve until such time as the new primary member is appointed and sworn in.

- d. The Committee offers the Administrator the following guidelines for appointing alternates:
 - 1. When possible, the primary member should be allowed to recommend his alternate;
 - 2. If there is more than one applicant for a position, the primary member and Administrator should consider the other applicants when selecting alternates. The Committee requests the Administrator consider diversity of organizations within each membership category when selecting alternates.

Section 6. Attendance of Appointed Members

- a. Attendance of scheduled Committee meetings is expected. The standard of attendance is determined as follows:
 - 1. For each appointed membership category team consisting of a primary member and alternate, meeting either condition (a) or (b) is considered to be not meeting the standard of attendance:
 - (a) The primary member of the team missing four consecutive meetings, or a total of six meetings in a calendar year.
 - (b) The team missing three consecutive meetings, or a total of four meetings in a calendar year.
 - 2. For a primary member with no alternate, meeting condition (a) is considered to be not meeting the standard of attendance:
 - (a) Missing four consecutive meetings, or a total of six meetings in a calendar year.
 - b. The Committee Chair shall review the meeting attendance records on a regular basis and shall inquire about members and teams with excessive absences.
 - c. The Chair may make an exception to the attendance standards for a member experiencing extenuating circumstances.

Section 7. Appointed Member Removal

- a. Circumstances may arise which require that a Committee member voluntarily resign or be removed from their position. Such events include:
 - 1. Failing to meet the attendance standards, as set in Section 6,
 - 2. Falsifying application materials,

3. The member's term ending prematurely due to meeting one of the conditions described in Article III, Section 4, items b1 and b2.

b. A member who demonstrates any of the three criteria listed above is expected to voluntarily tender his written resignation to the Chair (with a copy to the Administrator) within five working days of being informed of this condition. If the expected resignation is not forthcoming, the Chair shall privately contact the member, explain which bylaw(s) has been violated, and seek the member's written resignation. If the request is not honored within ten working days, the Chair shall write to the member (with a copy to the Administrator), explaining which bylaw(s) has been violated and, again, request a written resignation. If the resignation is not offered within 15 working days the Chair shall notify the Administrator in writing (with a copy to the situation, identify which bylaw(s) has been violated, and seek the Administrator's assistance in removing the recalcitrant member.

c. The Chair shall announce at the next full meeting the resignation or removal or any member.

Article IV: Officers

Section 1. The Administrator shall appoint a Chairperson for the Committee from the membership specified in Article III.

Section 2. The Administrator shall appoint a Vice-chairperson for the Committee from the membership specified in Article III, from a membership category other than that of the Chairperson.

Section 3. An Executive Secretary (Secretariat) for the Committee shall be contracted by the Administrator. The Secretariat shall serve as the Administrative staff to the Committee.

Article V: Subcommittees and Work Groups

Section 1. The Committee may establish Subcommittees and Work Groups, as it deems necessary. Meetings shall be duly noticed and open to the public in accordance with Article VII to receive maximum participation.

Section 2. The Chair of the Harbor Safety Committee shall appoint the chairperson of Subcommittees and Work Groups. The Chair may appoint Subcommittee members.

Section 3. Subcommittees should be composed of an uneven number of voting Committee members with no fewer than three people on a subcommittee. Vote by the majority of the subcommittee members present shall be necessary to pass a recommendation of the subcommittee. If a majority of Committee members are voting at a subcommittee meeting, that meeting should be noticed as a meeting of the full Harbor Safety Committee.

Section 4. Work Groups may be composed of any number of participants. Work Groups should operate by consensus of those present, including interested members of the public.

Section 5. Subcommittees and Work Groups may make recommendations to the full Committee, which will vote on the recommendations as detailed in Article VIII. Recommendations should be made in writing and provided to the Committee prior to any vote on the matter.

Article VI: Recommendations from Committee

Section 1. The Committee shall make recommendations or requests to the Administrator on rules, regulations, guidelines and policies on Harbor Safety. The Committee may make recommendations or requests to other federal, state or local agencies.

Section 2. The Committee shall prepare and submit a Harbor Safety Plan and annual updates to the Administrator by July 1 of each year or as directed otherwise by the Administrator.

Article VII: Meetings

Section 1. Governing rules for meetings shall be the Ralph M. Brown Act (Open Meetings for Local Legislative Bodies), the San Francisco Bay Region HSC bylaws, and Robert's Rules of Order.

Section 2. Each Committee member and alternate shall be provided a copy of the San Francisco Bay Region HSC bylaws and the Harbor Safety Plan. Upon request, Committee members and alternates, as well as interested parties, shall be provided a copy of the Brown Act.

Section 3. The Committee normally meets at 10:00 a.m. on the second Thursday of each month and rotates meeting locations to include the Ports of Oakland, Richmond and San Francisco or other relevant locations within the San Francisco Bay Region.

Section 4. Quorum

In order for a meeting to take place, a quorum of appointed members or their alternates consisting of nine (9) individuals shall be present. Should a quorum not be present, the Committee can proceed as a committee of the whole, take public testimony, receive input on any agenda item duly noticed, but cannot take action on any item.

Section 5. Agenda for Meetings:

- a. An agenda drafted by the Secretariat in consultation with the Committee Chair shall be prepared for each meeting of the Committee. The agenda shall be distributed to members, alternates, and interested parties no fewer than seven (7) days prior to the scheduled meeting and shall comply with all provisions of the Brown Act.
- b. In accordance with the Brown Act, agendas for full Committee meetings, and the schedule of upcoming workgroup and subcommittee meetings shall be posted 72 hours in advance at the Secretariat Offices. Postings shall be visible from the outside of building.
- c. Agendas shall include a brief general description of each item to be discussed, including whether a voting action is to be taken on an item.
- d. Each agenda item that requires Committee action shall include time for public comment.
- e. The Committee may take action on an item not appearing on the agenda by determining that an immediate need exists and it came to the attention of the Committee after the agenda was distributed. This determination must be approved by a two-thirds $(2/3^{rd})$ vote of all appointed Committee members or, if less than two-thirds $(2/3^{rd})$ of all appointed members are in attendance, by a unanimous vote of those appointed members present.
- f. A Committee member or member of the public may discuss an item not on the agenda under New Business/Public Comments. However, no action by the Committee can be taken until such time as the item is duly noticed at a regular or special meeting, and time has been allotted to receive public input prior to Committee action.

Article VIII: Voting

Section 1. Voting

a. The San Francisco Bay Region Harbor Safety Plan annual review shall be approved by two-thirds (2/3rds) of the appointed Committee members or their alternates.

- b. With the exception of items specified in Section 1a of this Article, Article VII, Section 5 e, and Article IX, passage of any item subject to a vote by Committee members shall require a simple majority of appointed members, or their alternates, present at a meeting. No action shall be taken on any item that is not on the agenda provided pursuant to Article VII, Section 5, except as allowed by Article VII, Section 5e.
- c. Due to the advisory nature of the Committee and its selected representatives, members shall not be excused from voting in case of potential conflict of interest.

Article IX: Bylaws Review, Acceptance and Amendments

Section 1. Enactment or Amendment of Bylaws

To enact or amend the bylaws, the proposed bylaws must be:

- a. Included as an agenda item at a regular meeting.
- b. Noticed to the public in accordance with provisions of Article VII, Section 5, of these bylaws.
- c. Be approved by two-thirds (2/3rds) of the appointed Committee members or their alternates.

Section 2. Bylaws Status

a. The bylaws shall become effective after Committee approval and shall continue in force until amended or repealed.

Article X: Certification

I certify that these bylaws were approved by the Harbor Safety Committee of the San Francisco, San Pablo and Suisun Bays, including the Ports of Sacramento and Stockton, on October 9, 2003, at Richmond, California, by a vote of 16 yea to 0 nay. This document is true and correct, and constitutes the official bylaws governing the Committee. These bylaws shall remain in force until amended or repealed in accordance with Article IX.

CALIFORNIA CODE OF REGULATIONS TITLE 14, DIVISION 1 SUBDIVISION 4, OFFICE OF OIL SPILL PREVENTION AND RESPONSE CHAPTER 3. OIL SPILL PREVENTION AND RESPONSE PLANNING SUBCHAPTER 1. HARBOR SAFETY COMMITTEES AND HARBOR SAFETY PLANS

SECTIONS 800 - 802

Effective 2/9/05

800. DEFINITIONS

In addition to the definitions in Chapter 1, Section 790 of this Subdivision, the following definitions shall govern the construction of this subchapter. Where similar terms are defined, the following will supersede the definition in Chapter 1:

- "Vessels" means any watercraft or ship of any kind, including every structure adapted to be navigated from place to place for the transportation of merchandise or persons.
- NOTE: Authority cited: Section 8670.23, Government Code. Reference: Sections 8670.3, 8670.21 and 8670.23, Government Code.

800.5. HARBOR SAFETY COMMITTEES

- (a) The Administrator shall create harbor safety committees for the harbors and adjacent regions of San Diego Bay; Los Angeles/Long Beach Harbor; Port Hueneme; San Francisco, San Pablo, and Suisun Bays; and Humboldt Bay. In consultation with each harbor safety committee, the Administrator shall determine its geographic region of responsibility which shall be clearly reflected in the committee's plan as described in Section 802(b)(2) of this Subchapter.
- (b) In the event that a designee of a port authority is not able to participate as a harbor safety committee member due to military affiliations, the civilian counterpart for that harbor may serve in place of the port authority designee.

All meetings of harbor safety committees, their subcommittees, workgroups or organizations, as defined in Government Code Section 54952, are subject to the open meeting requirements contained in Government Code Sections 54950 through 54962.

NOTE: Authority cited: Sections 8670.23 and 8670.23.1, Government Code. Reference: Section 8670.23, Government Code.

800.6. HARBOR SAFETY COMMITTEE MEMBERSHIP

- (a) The Administrator shall appoint to each harbor safety committee, for a term of three years, all of the following members and their alternates:
- (1) A designee of each of the port authorities within the region, except that the harbor safety committee for the San Francisco, San Pablo and Suisun Bay region shall have four designees.
- (2) A representative of dry cargo vessel operators, except that the harbor safety committee for the San Francisco, San Pablo and Suisun Bay region may have two representatives.
- (3) A representative of tank ship operators, except that the harbor safety committee for the San Francisco, San Pablo and Suisun Bay region shall have one additional representative of either tank ship operators or marine oil terminal operators.
- (4) For the harbor safety committees for the Los Angeles/Long Beach Harbor region, Port Hueneme region, and Humboldt Bay region a representative of marine oil terminal operators.
- (5) A representative of tug or tank barge operators, who is not also engaged in the business of operating either tank ships or dry cargo vessels, except that the harbor safety committees for the San Francisco, San Pablo and Suisun Bay region and Humboldt Bay region shall have one representative of tug operators and one representative of tank barge operators, neither of whom is also engaged in the business of operating either tank ships or dry cargo vessels.
- (6) For the harbor safety committees for the San Francisco, San Pablo and Suisun Bay region, Los Angeles/Long Beach Harbor region and San Diego Bay region, a representative of scheduled passenger ferry or excursion vessel operators.

Appendix D

- (7) A representative of the pilot organizations within the region, except that the harbor safety committee for the Los Angeles/Long Beach Harbor region shall have two pilot representatives: one a designee of the Port of Los Angeles pilot organization and one a designee of the Port of Long Beach pilot organization. Additionally, the harbor safety committee for the Los Angeles/Long Beach Harbor region shall have one representative of mooring masters who represents all mooring masters operating within the committee's geographic area of responsibility.
- (8) A representative of a recognized labor organization involved with operations of vessels.
- (9) A representative engaged in the business of commercial fishing.
- (10) A representative of pleasure boat operators or a recreational boat organization.
- (11) A representative of a recognized nonprofit environmental organization that has as a purpose the protection of marine resources, except that the harbor safety committee for the Los Angeles/Long Beach Harbor region may have two representatives .
- (12) The United States Coast Guard Captain of the Port and a designee of each of the following federal agencies to the degree that each consents to participate on the committee: the United States Army Corps of Engineers, the National Oceanographic and Atmospheric Administration, and the United States Navy.
- (13) A designee of the California Coastal Commission, except for the harbor safety committee for the San Francisco, San Pablo and Suisun Bay region, where the Administrator shall appoint a designee of the San Francisco Bay Conservation and Development Commission.
- (b) A harbor safety committee may petition the Administrator with a request for new or additional membership positions for special needs to conduct ongoing harbor safety committee business and which reflect the makeup of the local maritime community. The qualifications for such positions shall be set either in committee bylaws or on the petition. The approval of such petitions shall be at the sole discretion of the Administrator.
- A harbor safety committee may petition the Administrator for the elimination of new or additional membership positions requested and approved pursuant to Subsection (b). The approval of such petitions shall be at the sole discretion of the Administrator.

(d)	The members appointed from the categories listed in Subsections $(a)(2)$, (3) ,
	(4), (5),(6), and (7) above shall have navigational expertise. An individual is
	considered to have navigational expertise if the individual meets any of the
	following conditions:

- (1) Has held or is presently holding a United States Coast Guard Merchant Marine Deck Officer's license.
- (2) Has held or is presently holding a position on a commercial vessel that includes navigational responsibilities.
- (3) Has held or is presently holding a shoreside position with direct operational control of vessels.
- (4) Has held or is currently holding a position having responsibilities for permitting or approving the docking of vessels in and around harbor facilities.
- (e) The Administrator shall appoint a chairperson and vice chairperson, for a term not to exceed the balance of their current membership appointment, for each harbor safety committee from the membership specified in Subsection (a) above. The Administrator may withdraw such appointments at his or her sole discretion.
- (f) Upon request of the committee chairperson, pursuant to the committee's bylaws, the Administrator may remove a member or alternate appointed under authority of Subsection (a) above.

NOTE: Authority cited: Sections 8670.23 and 8670.23.1, Government Code. Reference: Section 8670.23, Government Code.

801. GENERAL PROVISIONS

- Each harbor safety committee shall be responsible for planning for the safe navigation and operation of vessels within its geographic region of responsibility. As part of meeting this responsibility, each committee shall prepare and submit to the Administrator its harbor safety plan which encompasses all vessel traffic within its region and addresses the region's unique safety needs.
- (b) All harbor safety plans shall be consistent with both the California Oil Spill Contingency Plan and the National Contingency Plan.

- All harbor safety plans shall be in writing and shall include a reference to any federal, state or local laws or regulations if those laws or regulations were relied upon to develop the plan.
- (d) Harbor safety plans which meet the requirements of this subchapter shall be implemented by the Administrator in consultation with the respective committee.
- (e) On or before July 1 of each year, each harbor safety committee shall assess maritime safety or security within its region, including tank vessel safety, and shall report its findings and recommendations for improvements to the Administrator by amending its current harbor safety plan or instituting other alternatives to address its findings. All plans shall be reviewed by the Administrator to ensure their compliance with this subchapter.
- (f) The Administrator may direct a harbor safety committee to address any issue affecting maritime safety or security, as appropriate, and to report findings and recommendations on those issues.

NOTE: Authority cited: Sections 8670.23 and 8670.23.1, Government Code. Reference: Section 8670.23, Government Code.

802. HARBOR SAFETY PLAN CONTENT

- (a) All harbor safety plans shall be written in consideration of the best achievable protection standard as that term is defined in Chapter 1 of this subdivision.
- (b) Each harbor safety plan shall include, at a minimum, a discussion of the following:
- (1) Tug Escorts
- (A) One section of the plan shall be dedicated to the usage of tug escorts in the committee's geographic region of responsibility.
- (B) This section shall allow for a case-by-case determination of tug escort usage or need based on specified criteria which include, but are not limited to, all of the following factors:
- 1. the physical limitations of the tugs;
- 2. an analysis of commonly encountered weather and sea conditions including, but not limited to, wind, tidal and ocean currents;

Appendix D

- 3. the type of cargo carried by the tank vessel;
- 4. a determination of whether or not tug escorts are needed for unladen tank vessels; and
- 5. the effectiveness of tug escorts in steering and/or stopping assistance for heavily laden tank vessels given the geographic and navigational limitations of that region.
- (C) This section shall also include, but not be limited to, all of the following:
- 1. an outline discussing tug boat capabilities when assisting a tank vessel;
- 2. a recommendation determining when tank vessels must be escorted by
- 3. a determination of sufficient size, horsepower, and pull capacity of the tug(s) to assure maximum assistance capability;
- 4. a comprehensive inventory of the number and types of tugs available for tank vessel escort in each geographic region; and
- 5. an analysis, including factual data and studies relating to the analysis, which specifies the incidence and location of accidents and the effects of the absence or presence of tug escorts at the time of those accidents.
- (D) Each plan shall address its method for performing a continued study of tug escorts, which will rely in part on relevant information solicited by the harbor safety committee from pilots, masters, representatives from towing industries and builders, and other interested parties.
- (2) Geographic Region of Responsibility
- This section shall provide a written description of each committee's geographic region of responsibility and shall include a large scale chart, or chartlet, illustrating the entire region. The geographic region of responsibility described and illustrated shall be the one approved by the Administrator as outlined in Section 800.5(a) of this Subchapter.
- (3) Regional Harbor Conditions

Appendix D

This section shall provide:

- (A) a description of existing and expected conditions of weather, tidal ranges, tidal currents (directions and velocities) and other factors which might impair or restrict visibility or impact vessel navigation;
- (B) a description of the procedures for routing vessel traffic, and any contingency or secondary routing plans which may be used during construction and dredging operations;
- (C) a description of limitations of current anchorages (designations, proximity to heavily used fairways or channels) and any plans, if developed, to address those limitations; and
- (D) a description of the current channel design (navigable channel width and advertised dredged depth) and any proposed changes to these plans.
- (4) Vessel Traffic Patterns

This section shall provide, to the greatest extent possible:

- (A) A description of the types of vessels which call on the ports or facilities within the region; and
- 1. identification of the types of cargo transported on the vessels; and
- 2. a determination of the amount of oil annually (using a three year average) shipped into or from the ports or facilities within the region.
- (B) a history and types of all accidents and near-accidents which have occurred within the region during the past three years and any corrective actions or programs taken to alleviate recurrences. For purposes of this subsection, "near-accident" shall mean all situations where a risk of collision as defined by 33 USC 2007 existed;
- (C) an assessment of current safety problems or conflicts with small vessels, sailing vessels, or vessels engaged in fishing as it relates to violation of Rule 9 (Narrow Channels Rule) of the Inland Navigational Rules Act (33 USC 2009);
- (D) current procedures for routing vessels during emergencies or other contingencies which impact navigation;
- (E) a review of existing and proposed federal, state and local laws, regulations or ordinances affecting the region to determine a need for any change;

142 SF HSC Plan approved June 14, 2012

- (F) an assessment of the need for establishing or upgrading existing educational or public awareness programs for all waterway users.
- (5) Aids to Navigation

This section shall:

- (A) describe any fixed navigational hazards specific to the region and aids to navigation systems in place to minimize risk of contact with these hazards;
- (B) evaluate the existing aids to navigation systems available to each region as established and maintained by the United States Coast Guard or other navigational aids as permitted by the United States Army Corps of Engineers, and determine the need for any changes; and
- (C) evaluate current programs to determine accurate depth information in navigable channels, anchorages and berths used by tank vessels, and make recommendations necessary to increase the accuracy of such information.
- (6) Communication

This section shall:

- (A) review and evaluate the adequacy of current ship-to-ship and ship-to-shore communication systems used in the region;
- (B) identify any low propagation, or silent areas within the region;
- (C) if communication deficiencies exist, develop a strategy to address such deficiencies.
- (7) Bridge Management Requirements
- (A) This section shall assess the current schedule for bridge openings, the adequacy of ship-to-bridge communications, and the physical limitations affecting vertical and horizontal clearance.
- (8) Enforcement
- (A) This section shall include suggested mechanisms that will ensure that the provisions of the plan are fully, uniformly and regularly enforced.
- (9) Project Funding

Appendix D

This section shall:

- (A) provide recommendations for funding projects that the committee intends to recommend or initiate; and
- (B) consider the imposition of user fees, and assess existing billing mechanisms as potential funding sources.
- (10) Competitive Aspects

This section shall:

- (A) identify and discuss the potential economic impacts of implementing the provisions of the harbor safety plan; and
- (B) describe the significant differences in the restrictions that could vary from port to port within the region.
- (11) Miscellaneous
- (A) This section shall address any additional issues deemed necessary by the harbor safety committee that could impact safe navigation in the region including, but not limited to:
- 1. vessel pilotage;
- 2. vessel ballast procedures or requirements;
- 3. vessel mooring requirements;
- 4. navigation in reduced or restricted visibility; and
- 5. maintenance dredging necessary for safe vessel operation.

NOTE: Authority cited: Sections 8670.23 and 8670.23.1, Government Code. Reference: Section 8670.23, Government Code.

Annual Work Group Reports

Dredging Issues Work Group (DIG)

Captain Esam Amso, Chair Valero Marketing and Supply Company 3400 E Second Street Benicia, CA 94510 Phone: (707) 745-7205 esam.amso@valero.com

Navigation Work Group

Captain Bruce Horton, Chair S.F. Bar Pilots Pier 9, East End San Francisco, CA 94111 Phone: (510) 326-3722 b.horton@sfbarpilots.com

Accomplishments 2011/2012

1. Both groups worked with the ACOE, USCG and NOAA on channel realignment for Pinole Shoal and the North Ship Channel. The project was completed, with new markers installed.

2. Worked with USCG and NOS to design a fog sensor pilot program in the Central Bay.

- 1. Achieve a minimum depth of 35 feet and safe navigation throughout Pinole Shoal and the North Ship Chanel.
- 2. Maintain a strong working relationship with the ACOE.

Appendix E

Annual Work Group Reports

Ferry Work Group

Captain Pat Murphy, Chair Blue & Gold Fleet Pier 41 Marine Terminal San Francisco, California 94133 Phone: (415) 705-8248 Fax: (415) 705-5429 patrick@blueandgoldfleet.com

Accomplishments 2011/12

- 1. Conducted V-MAP exercise and made changes to plan accordingly.
- 2. Work closely with Port of San Francisco & America's Cup organizers to develop protocols during events in 2012/13.

- 1. Develop ferry communications protocol.
- 2. Develop database program for all ferry vessel schedules.
- 3. Review V-MAP plan and update to the COTP satisfaction.

Appendix E

Annual Work Group Reports PORTS Work Group

Chris Peterson, Chair Port of Oakland 530 Water Street Oakland, CA 94607 Phone: (510) 627-1308 cpeterson@portoakland.com

Accomplishments 2011/2012

- 1. In 2011 we added a weather station at San Francisco Pier 1 and the weather station at Oakland Berth 67. The weather station at Berth 67 was installed based on the findings of the ultra large container vessel study conducted by the Port of Oakland. This station is to assist the Bar Pilots with turns in the inner harbor turning basin.
- 2. We are funded through June 2013. Funding is through one-year contracts with OSPR.

- 1. Scheduled to complete the Amorco Martinez tide station in October 2012
- 2. San Francisco Pier 27 weather station is due to be installed when construction of the new San Francisco cruise ship terminal allows. The Pier 27 installation may not be possible until early 2014. The Pier 27 installation will complete the Cosco Busan grant funds.
- 3. Continue working with the USCG regarding a demonstration installation of a visibility sensor in Oakland.
- 4. Work with the America's Cup to provide meteorological data to assist the race organizers.

Annual Work Group Reports

Prevention through People Work Group

Margot Brown, Chair 3217 Fiji Lane Alameda, California 94501 Phone: (510) 523-2098 Fax: (510) 523-2098 mjbjhb@aol.com

Accomplishments 2011/2012

- 1. Served on CG committee considering crowd control, restricted areas, etc. in connection with America's Cup competition.
- 2. Continued distribution of small vessel advisory publications.
- 3. "Sharing The Bay" video made available on HSC website.
- 4. Shared concerns about possible use of E15 fuels in recreational vessels.
- 5. Shared concerns regarding fatality and other incidents involving humanpropelled vessels.

- 1. Continue prior year's activities.
- 2. Meet with interested parties and design accident-prevention materials related to kayaks and paddleboards.

Appendix E

Annual Work Group Reports

Tug Work Group

Captain Jonathan Mendes, Chair Starlight Marine Services 321 A Avenue Alameda, Ca 94501 Phone: (510) 381-1532 Fax: (510) 868-3416 jmendes@harleymarine.com

Accomplishments 2011/2012

- 1. Partnering with LA/LB counterparts, the work group developed and implemented Best Maritime Practices for bunkering operations in the State of California. The HSC adopted the BMPs in November 2011. The BMPs are successfully being utilized in both ports. The BMPs serve as an effective tool refreshing Mariners of what steps must be taken as per regulations, and adds a series of calculated steps that significantly increase safety during bunker operations.
- 2. The workgroup initiated development of a Bunker Safety Training Video for vessels that receive bunkers in West Coast Ports. Subsequently the Work Group has provided OSPR language for a safety video, which is currently under development.

- 1. The work group has agreed to develop BMPs for dead ship tows, for adoption by the HSC. This work is currently in progress, and is expected to be completed by the end of June.
- 2. The work group will continue working towards a solution for the issue of tankers calling SF Bay with Hard Point Strengths that are underrated for the braking force of the tugs.

Office of Spill Prevention and Response (OSPR) TUG ESCORT VIOLATION DISPOSITION SUMMARY REPORT FOR 2011

VIOLATIONS TOTAL		
Failure to Notify the S.F. Marine Exchange		1
Bollard Pull Certificate expired		0
Current Velocity violation		0
Not enough required Kips for the Zone		0
Escort Certification (none/expired)		0
	TOTAL	1

DISPOSITION TOTAL	
Violation Dismissed	0
Hearing Waived / Case settled	0
Still Pending	<u>1</u>
	1

TITLE 14, CALIFORNIA CODE OF REGULATIONS SUBDIVISION 4. OFFICE OF SPILL PREVENTION AND RESPONSE CHAPTER 4. VESSEL REQUIREMENTS SUBCHAPTER 1. TANK VESSEL ESCORT REGULATIONS FOR THE SAN FRANCISCO BAY REGION SECTIONS 851.1 through 851.10.1 <u>Amended September 15, 2006</u> <u>Effective October 15, 2006</u>

"851.1 Effective Date of this Subchapter"

This subchapter, as amended, shall be effective on June 9, 2004.

Note: Authority:
Reference:Sections 8670.17.2(a), and 8670.23.1(d), Government Code.Sections 8670.17.2(b), 8670.23.1 (d), (e)(1) and (h) Government Code.

"851.2 Purpose and Scope"

This subchapter sets forth tank vessel escort requirements for the San Francisco, San Pablo and Suisun Bays. These requirements specify that tank vessels carrying 5,000 or more long tons of oil in bulk as cargo shall be escorted by a suitable escort tug or tugs. The escort tugs will be available, and shall respond as needed to influence the speed and direction of travel of the tank vessel in the event of a casualty, or steering or propulsion failure, thereby reducing the possibility of groundings or collisions and the risk of oil spills from these tank vessels. This subchapter establishes the criteria for matching tugs to tankers and barges. Tankers will be matched according to a matrix that correlates a tanker's displacement with the braking force of a tug(s). Barges must be matched based on a one-to-one correlation of the deadweight tonnage of the barge to the braking force of the tug(s).

The Administrator shall review the matching criteria and other program elements within two years of the effective date of this subchapter. The program review will include a survey of the tanker-related incidents in U.S. waters to determine the types of failures that have occurred, an assessment of tug technology and any advances made in design and power, and the tug escort-related rules and policies that are implemented by other coastal states and maritime organizations. At the conclusion of the review, the Administrator will determine whether it is necessary to modify the tug/tanker matching criteria or any other provision of the program requirements.

Note: Authority:	Sections 8670.17.2(a) & 8670.23.1(d), Government Code.
Reference:	Sections 8670.17.2(b) and 8670.23.1(e)(1), Government Code.

"851.3 Definitions"

Definitions governing the construction of this subchapter can be found in Government Code Section 8670.3, and Chapter 1 of this subdivision.

Note: Authority: Sections 8670.3, 8670.17.2(a) and 8670.23.1(d), Government Code. Section 8670.3 and 8670.17.2(a), Government Code.

"851.4 Applicability"

- (a) This subchapter shall apply to all tank vessels capable of carrying 5,000 or more long tons of oil in bulk as cargo when these vessels are underway on waters in the San Francisco, San Pablo and Suisun Bays, as follows:
 - (1) tank vessels carrying 5,000 or more long tons of oil as cargo shall be required to comply with all the requirements in this subchapter;
 - (2) tank vessels carrying less than 5,000 long tons of oil as cargo shall only be required to comply with the reporting requirement as stated in Subsection 851.7
- (b) The escort requirements of this subchapter shall not apply to tank vessels that are only shifting location within an anchorage. Any tug used during such a shifting maneuver need not be an escort tug registered with the Clearing House.
- (c) This subchapter shall not apply to tank vessels otherwise covered by the requirements of this subchapter in the event of an emergency. The master of the tank vessel shall report to the Clearing House any deviation from the requirements outlined in this subchapter as soon as practicable, and in no case later than the departure of the tank vessel from the marine waters of the state. For purposes of this section, an emergency shall include, but not be limited to, any of the following:
 - (1) imminent and immediate danger to the vessel, its cargo, or its crew; or
 - (2) imminent and immediate danger to a marine terminal, or to the escort tug; or
 - (3) imminent and immediate danger to a vessel in close proximity to the tank vessel; or
 - (4) any emergency declared by the Captain of the Port.
- (d) This subchapter (except for this Subsection 851.4(d)) shall not apply to tankers with double hulls, as that term is defined in 33 CFR 157.03(kk), when the tanker also has the following:
 - (1) Fully redundant steering and propulsion systems to include:
 - (A) two independent propulsion systems each with a dedicated propeller, engine (or motor), electrical generation system, electrical system (including the switchboard), fuel system, lube oil system, and any other system required to provide the vessel with independent means of propulsion; and
 - (B) two independent rudders each with separate steering systems; and

- (C) the propulsion and steering components, as described in Subsection (A) and (B) above, shall be arranged in separate spaces, such that a fire or flood in one space will not affect the equivalent system in the other space(s); and
- (D) a bow thruster with an assigned power source;
- (2) A Navigation System in compliance with the federal navigational equipment requirements set forth in 33 CFR Sections 164.35, 164.37, 164.38(b), 164.40, 164.41, 164.42, and 164.43.
- (3) No exemption to this subchapter shall be allowed for a tanker requesting a U.S. Coast Guard Captain of the Port letter of deviation, pursuant to 33 CFR Sections 164.51, 164.53, and 164.55.
- (4) The Administrator may require tankers that are exempt from this subchapter under the conditions outlined in Subsection (d) to periodically demonstrate the tanker and crew=s ability to maneuver in response to a partial or total loss of propulsion and/or steering at a level of safety at least equal to that of an escorted tanker.
- (e) This subchapter shall apply to all tugs being used to escort tank vessels in waters identified as escort zones.
- (f) The tank vessel master remains responsible for the safe navigation and maneuvering of the vessel in all circumstances. The requirements outlined in this section are in addition to, and not a limitation of, any other responsibility created by custom, law, or regulation.
- Note: Authority:
Reference:Sections 8670.17.2(a) and 8670.23.1(d), Government Code.Section 8670.23.1, Government Code.
- "851.5 Escort Zone Requirements"
- (a) Six tank vessel escort zones are established as follows:
 - Zone 1: All waters in the area encompassed by a straight line drawn between Point Bonita Light, through Mile Rocks Light to the shore (the COLREGS Demarcation Line), and eastward to the Golden Gate Bridge;
 - (2) Zone 2: All waters from the Golden Gate Bridge, south to a line drawn between the southern tip of Bay Farm Island and the southeastern tip of Point San Bruno Peninsula, and north to a line drawn from Point San Pablo to San Pablo Bay Light 4 (Light List number 5880), to San Pablo Bay Channel Light 5 (Light List number 5885), to Point San Pedro;
 - (3) Zone 3: All waters from the southern end of Zone 2 to one mile north of the San Mateo Bridge;
 - (4) Zone 4: All waters in the navigable channel from one mile north of and to one mile south of the San Mateo Bridge;

- (5) Zone 5: All waters from the eastern boundary of Zone 2 to the western approaches of the Carquinez Bridges at Light 15;
- (6) Zone 6: All waters from Light 15, through the Carquinez Strait, north on the Sacramento Ship Channel to one mile beyond the Ryer Island Ferry Terminal and east on the San Joaquin River to one mile beyond the Antioch Bridge;
- (b) Tank vessels required to have escorts under this subchapter shall be escorted in the zones as specified below:
 - (1) Escort tugs are required for tank vessels operating within Zones 1, 2, 4, or 6;
 - (2) Escort tugs will not be required in Zones 3 or 5, or in areas outside of Zones 1 through 6;
 - (3) No tank vessel may transit in a zone that requires an escort tug unless escorted by a tug or tugs of sufficient size and capability, as specified in sections 851.9 (for tankers) and 851.9.1 (for barges).
 - In Zone 1, escort tugs shall be stationed as follows:
 - (A) on an inbound transit, the escort tug shall be in Zone 1 prior to the tank vessel's arrival to the area bounded by an arc eight nautical miles seaward of and centered on Mile Rocks Light; and
 - (B) on an outbound transit, the escort tug shall remain in Zone 1 until the tank vessel leaves the area bounded by an arc eight nautical miles seaward of and centered on Mile Rocks Light.
- Note: Authority: Sections 8670.17.2(a) and 8670.23.1(d), Government Code. Reference: Section 8670.17.2(a), Government Code
- "851.5.1 Escort Plans"
- (a) All tank vessel masters shall use an Escort Plan for transits through zones 1, 2, 4, or 6. The tank vessel shall not continue or commence a transit through any Escort Zone without an Escort Plan that is complete and adequate. The plan shall document the steps that the tank vessel owner/operator and/or master will take to comply with the requirements of this subchapter. The Escort Plan requirements set forth in this section are only planning standards and may not reflect the exigencies of an actual incident response. However, the Escort Plan must demonstrate that the vessel master is prepared to take the actions necessary to assure a reasonable level of success in providing the protection intended by this subchapter, as stated in section 851.2. The Escort Plan shall include:
 - (1) the tank vessel's intended route(s);
 - (2) the intended transit speed(s);

- (3) a communication plan, to include the radio frequencies that will be used and any other means of electronic communication;
- (4) the following characteristics of the tank vessel:
 - (A) the location and strength of the bitts and chocks to be used by the escort tugs,
 - (B) the location of the pushing surfaces on the hull that are strong enough to sustain the forces that can be exerted by the escort tug(s),
 - (C) the number of crew assigned to escort-related duties,
 - (D) any pertinent performance characteristics and related limitations of the steering and propulsion system(s);
 - (4) the escort tugs to be used during the transit as required in section 851.9 (for tankers) or 851.9.1 (for barges);
 - (5) the response actions that will most likely be implemented in the event of an emergency, taking into account the available bitts and chocks, pushing surfaces, line type, and expected tides and currents.
- (b) Escort Plans shall be prepared using one of the following:
 - (1) a format as designed, completed and submitted by the tank vessel owner/operator; or
 - (2) a Checklist as recommended by the Harbor Safety Committee of the San Francisco Bay region, and approved by the Administrator. The vessel owner/operator shall assure that the vessel master completes the Checklist according to the requirements in this subchapter.
 - (c) Review, approval and use of an Escort Plan designed and submitted by the tank vessel owner/operator:
 - (1) a tank vessel owner/operator may develop an Escort Plan for a vessel or vessels, and submit that plan to the Administrator for review and approval prior to using the plan for escorted transits;
 - (2) the Escort Plan developed by the vessel owner/operator shall include all the information required in subsection 851.5.1(a). The requirement for information regarding the tug(s) to be used during the transit may be met by stating the size and braking force capacity of the tug(s) needed for each of the vessels covered by the plan.
 - (3) each plan shall be either approved, approved with conditions, or denied within 60 days after the Administrator receives the plan. Approval, once given, may be revoked if it is found that the plan submitter is not complying with the requirements of this subchapter;
 - (A) to be approved, the plan must comply with the requirements in this section, must match tug(s) to the tank vessels in accordance with the requirements in this subchapter, and must demonstrate that the tank vessel owner/operator and/or master maintains a level of

readiness that will allow for effective implementation of the plan. The plan submitter shall be notified in writing when a plan has been approved.

(B) approval shall be denied or revoked if the plan, or the implementation of the plan, does not comply with the requirements of this subchapter. If a plan is denied or revoked, the Administrator shall notify the owner/operator in writing of the reasons for denial or revocation, and provide an explanation of those actions necessary to secure approval. The Checklist form of escort plan, as prescribed in this section, shall be used unless and until a new or revised escort plan is submitted and approved by the Administrator.

- (4) once approved, the master and pilot shall use and comply with the Escort Plan on each escorted transit:
 - (A) the details of the Escort Plan shall be reviewed and discussed as part of the pre-escort conference (section 851.7);
 - (B) as part of the pre-escort communications, the pilot or, if there is no pilot on board, the master shall notify the Clearing House that the plan has been reviewed, and shall inform the Clearing House of the tugs that have been chosen for the escort.
- (5) the Checklist format, as described in this section, shall be used for all escorted transits unless or until an Escort Plan is submitted by the vessel owner/operator, and approved by the Administrator.
- (d) Completion, review and use of Escort Plans prepared using the Checklist format developed by the Harbor Safety Committee:
 - the Checklist shall include all the items enumerated in subsection 851.5.1(a), as well as a schematic drawing of a tank vessel sufficient to illustrate the location of the bitts and chocks, and those areas on the hull that are capable of withstanding the forces exerted by the escort tug(s). The Administrator shall provide a copy of the approved Checklist to the Clearing House for distribution to tank vessel owner/operators, masters and/or pilots.
 - (2) the master shall complete the Checklist, and shall verify that all the requisite elements have been included. The master shall sign the Checklist to indicate that, to the best of the master's knowledge, the information on the Checklist is correct, and is in compliance with the requirements of this subchapter. If there is no pilot on board, the master shall notify the Clearing House when the Checklist has been completed and shall inform the Clearing House of the tugs that have been chosen for the escort. The Administrator may request a copy of any Checklist at any time to determine if the planning process has been completed adequately.
 - (3) the Checklist shall be completed by the tank vessel master at the following points during a transit operation;
 - (A) for vessels arriving from sea, the Checklist shall be completed prior to entering Zone 1;

- 1. Alternatively, the agent or owner/operator may complete the Checklist and electronically send the completed form to the master and the Clearing House:
 - a. before the vessel=s estimated time of arrival to the San Francisco Bay Pilotage area, or
 - b. before the vessel=s arrival at the San Francisco Bay Precautionary Area, or
 - c. after the vessel=s departure from its last Port of Call.
- (B) for in-bay movements or for departures, the Checklist shall be completed prior to beginning the transit.
- (4) if a pilot is on board, the pilot shall review the Checklist as cited in subsection 851.5.1(d) and shall verify that all the elements have been completed adequately. The pilot shall sign the Checklist after reviewing and verifying its adequacy. The pilot shall then notify the Clearing House that the planning process has been completed, and shall inform the Clearing House of the tugs that have been chosen for the escort.
 - (A) the pilot shall determine that the Checklist is adequate if the following are met:
 - 1. all the items on the Checklist have been addressed completely; and
 - 2. the information provided demonstrates that the tank vessel master is prepared to take the actions necessary to assure a reasonable level of success in using the escort tug(s) in response to a vessel casualty.
 - (B) if the pilot determines that the Checklist is not adequate, the pilot shall notify the Clearing House, and explain the reason(s) for such determination. The Clearing House shall then immediately notify the Administrator that a Checklist has been determined to be inadequate by the pilot.
 - (C) The Administrator shall review all inadequacy determinations made by a pilot and shall decide whether the determination is appropriate. The Administrator may affirm or overturn such determination, or may provide for conditional approval of a Checklist, as follows;
 - 1. the Checklist will be considered adequate if it is complete, if the tug to tanker match has been done in accordance with this subchapter, and the information provided demonstrates that the tank vessel master is prepared to take the actions necessary to assure a reasonable level of success in using the escort tug(s) in response to a vessel casualty. If a Checklist is determined to be inadequate, the

vessel may be ordered to discontinue operations until an adequate Checklist is completed;

- 2. a Checklist may be approved conditionally if there is a minor deficiency in one or more of the requisite elements. Conditional approval may require that the tank vessel operate under specified precautionary measures (such as operating at a slower speed). If the owner/operator of a tank vessel fails to comply with the requirements of the conditional approval, the Administrator may order the tank vessel to discontinue operations until an acceptable Checklist for that vessel has been completed and approved.
- (D) The pilot is not responsible for delaying or stopping the transit solely because of a plan=s inadequacy.
- (5) The tank vessel owner/operator or the master shall ensure a copy of the completed, signed Checklist is submitted to the Clearing House within 14 days after the transit covered by the Checklist. The master, pilot, ship=s agent or vessel owner/operator may send the copy to the Clearing House. A copy of the Checklist shall also be maintained aboard the vessel for a period of one year after the transit. A copy of the Checklist shall be made available to the Administrator upon request.
- Note: Authority:
Reference:Sections 8670.17.2(a) & 8670.23.1(d), Government Code.Sections 8670.17.2(b) and 8670.23.1(e)(1), Government Code
- "851.6 Clearing House Responsibilities."
 - (a) The Administrator shall establish a Clearing House which shall be responsible for performing escort compliance and monitoring duties, to include the following:
 - (1) monitor, verify, and record the braking force of each escort tug that will be used to comply with this subchapter;
 - (2) ensure that the braking force measurement is certified by the American Bureau of Shipping (ABS) or by any member in the International Association of Classification Societies;
 - (A) the braking force measurement shall be monitored by the Clearing House for those escort tugs that are tested in the San Francisco Bay region;
 - (B) escort tugs may be tested in another port if the braking force measurement is conducted in a manner consistent with the ABS (or equivalent) standards as used by the Clearing House. The tug owner/operator shall register such measurement with the Clearing House, and shall provide verification that the measurement complies with the ABS (or equivalent) standards.

- (3) maintain and publish a register which lists the following for each escort tug whose braking force is measured under this section:
 - (A) the tug's name;
 - (B) the tug operator;
 - (C) the length of the tug;
 - (D) for tractor tugs, bollard pull ahead or astern, or the braking force determined by an alternate compliance model developed in accordance with the requirements of this subchapter;
 - (E) for conventional tugs, bollard pull astern;
 - (F) type and configuration of the propulsion system;
 - (G) type and configuration of the steering system;
 - (4) receive notification of a tank vessel's arrival and/or movement as required under section 851.7;
 - (5) receive notification of the displacement of a tanker, and the tug(s) chosen for an escorted transit. The Clearing House shall use this reported information to determine if the tanker is correctly matched to the escort tug(s) as required in this subchapter, and shall immediately report to the Administrator when such a match has not been done correctly. The verification shall be made prior to the tanker's arrival and/or movement. The Clearing House shall also be responsible for verifying the tug vessel=s stability when these tugs are operating westward of the Golden Gate Bridge as specified in Section 851.8(f);
 - (6) receive notification of the deadweight tonnage of a barge and the tug(s) that have been chosen for the escorted transit. The Clearing House shall use this reported information to determine if the barge is correctly matched to the escort tug(s) as required in this subchapter, and shall immediately report to the Administrator if the match has not been done correctly. The verification shall be made prior to the arrival and/or movement of the barge;
 - (7) maintain copies of blank Checklists for distribution upon request to tank vessel owner/operators, masters and/or pilots;
 - (8) receive notification of the completion of an Escort Plan, or the completion and adequacy of a Checklist, and report to the Administrator when a pilot makes a determination that a Checklist is not adequate;
 - (9) maintain copies of the completed Checklists submitted by the tank vessel owner/operators or masters. Copies must be kept for a period of 3 years from the date of the transit covered by the Checklist. A copy of any Checklist shall be made available to the Administrator upon request;

- (10) receive reports from tug owners, operators or agents of any tug casualty that occurs during an escorted transit, and develop and maintain a database of all such casualty reports;
- (11) monitor compliance with the requirements of this subchapter and report all violations to both the Office of Spill Prevention and Response and the Harbor Safety Committee for the San Francisco Bay Region.
- (b) The Administrator shall ensure that the duties of the Clearing House are performed in an effective and impartial manner. The Administrator may enter into a contract or establish a memorandum of understanding to designate an individual, organization, corporation or agency to operate as the Clearing House.
- (c) The Clearing House shall be authorized to assess and collect a fee to cover the costs incurred in complying with the tug escort requirements of this subchapter. The owner/operators of all escort tugs and all tank vessels required to have a tug escort shall pay the fee assessed by the Clearing House.
- Note: Authority: Sections 8670.17.1, 8670.17.2(a) and 8670.23.1(d), Government Code. Reference: Section 8670.17.1 and 8670.23.1(e)(1), Government Code
- "851.7 Communication and Reporting Requirements Before, During and After an Escorted Transit"
 - (a) No more than one hour prior to entering or transiting the marine waters of the San Francisco, San Pablo or Suisun Bays, the pilot or, if there is no pilot onboard, the master of a tank vessel shall report the vessel's name and position to the Clearing House, and shall report the status of the vessel as follows:
 - (1) tank vessels carrying 5,000 or more long tons of oil as cargo shall report as "Escort Required"; or
 - (2) tank vessels carrying less than 5,000 long tons of oil as cargo and requiring no escort need not be reported.
 - (b) After completing the review of the Checklist or the Escort Plan, as specified in section 851.5.1, the pilot or, if there is no pilot onboard, the master of the tank vessel shall report the following to the Clearing House:
 - (1) a statement that the Escort Planning process has been completed;
 - (2) if a pilot is onboard, a statement from the pilot as to whether the Checklist is completed, and whether the Checklist is or is not adequate;
 - (3) a listing of the tugs that were chosen for the escort during the Escort Planning process;
 - (4) for a tanker, the vessel's displacement;
 - (5) for a barge, the vessel's deadweight tonnage.

- (c) Pre-Escort Conference: Before commencing an escorted transit, the pilot or, if there is no pilot onboard, the master of the tank vessel shall initiate communications with the escort tug(s). During this pre-escort conference, all parties shall plan and discuss the details of the escorted transit as specified on the Checklist or in the Escort Plan, including, but not limited to, the following:
 - (1) the intended route;
 - (2) the intended destination;
 - (3) the speed of the vessel;
 - (4) the positioning of the escort tug(s) relative to the tank vessel being escorted;
 - (5) the manner in which an emergency connection would be made between the escort tug and tank vessel;
 - (6) radio communications, including primary and secondary frequencies; and
 - (7) anticipated weather and tidal conditions.
- (d) The master of the escort tug(s) shall report the name of the tug(s) and the name of the tank vessel to the Clearing House upon arrival at the following locations:
 - (1) for inbound tank vessel movements; when passing Alcatraz, and when on-station;
 - (2) for in-bay and outbound tank vessel movements; when on-station at the tank vessel prior to movement of the tank vessel.
- (e) At all times during the escorted transit, the master or pilot of the tank vessel shall maintain direct, twoway radio communication with the master or pilot of the escort tug. The radio communication shall be on a channel agreed to by both the master or pilot of the tank vessel and the master or pilot of the escort tug.
- (f) Reporting tug casualties during and after an escorted transit:
 - (1) the master of the escort tug shall immediately notify the master or pilot of the escorted vessel of any casualty that occurs to the tug during the escorted transit. A casualty shall include any loss of main propulsion, primary steering, or any component or system that reduces the maneuverability of the tug, or any other occurrence that adversely affects the tug's ability to perform the escort function;
 - (2) the tug owner, operator or agent shall file a written casualty report with the Clearing House within 72 hours of occurrence. The Clearing House shall maintain a database of these reports for three years.

Note: Authority: Sections 8670.17.2(a) & 8670.23.1(d), Government Code. Reference: Section 8670.23.1(e)(1), Government Code.

"851.8 Requirements for Escort Tugs; Braking Force Measurement, Crew and Training Standards, Equipment and Stationing Criteria."

- (a) Braking force measurement:
 - (1) any escort tug used to comply with the requirements of this subchapter must have its braking force verified and registered with the Clearing House, as follows;
 - (A) for tractor tugs escorting in an ahead position the braking force is measured as the ahead bollard pull;
 - (B) for tractor tugs escorting in an astern position the braking force is measured as the astern bollard pull;
 - (C) for conventional tugs the braking force is measured as the astern bollard pull.
 - (2) The braking force shall be re-measured after any modifications and/or repairs to the main engines, hull, shaft-drive line, or steering, that could affect the bollard pull. The new measurements must be verified and registered with the Clearing House.
 - (3) The Clearing House shall publish procedures and standards to be followed when conducting braking force measurement. These procedures, entitled ASan Francisco Bay Region Clearing House, Rules for Bollard Pull Tests@, dated May 19, 2000, are incorporated by reference. These procedures and standards shall be made available upon request to the Clearing House.
 - (4) Any escort tug used to comply with the requirements of this subchapter shall also meet one of the following:
 - (A) the escort tug shall have its braking force re-measured within 3 years of its last bollard pull test, or;
 - (B) the escort tug shall submit to an Escort Tug Inspection Program, as follows:
 - 1. Escort tugs 150 gross tons or greater, and classed escort tugs shall be made available for inspection by the Administrator twice in five years during their dry dock examination. The period between inspections shall not exceed three years.
 - 2. Escort tug maintenance records shall be made available for inspection by the Administrator.
 - 3. If dry dock examination extensions are necessary, escort tugs shall comply with the direction of the cognizant Officer in Charge, Marine Inspection, or American Bureau of Shipping principal surveyors' direction.

- 4. For classed escort tugs, a copy of the Class Surveyor's report confirming that the condition of the drive train (shafts, propellers, nozzles or other type drive) and main engines are in the same state as when the builder's or last bollard pull certificate was issued, shall be forwarded to the Administrator.
- 5. Escort tug companies shall participate and have a certificate of compliance from one of the following Management Systems:
 - i. American Waterways Operators Responsible Carrier Program;
 - ii. International Safety Management;
 - iii. ISO 9000 (quality management).
- 6. Escort tugs of less than 150 gross tons shall be made available for inspection by the Administrator once in five years during their dry dock examination. These escort tugs shall use a certified Marine Surveyor and shall comply with subsections 2, 3, and 4, above.
- (C) Escort tugs that submit to the Escort Tug Inspection Program, as described above, can perform escort duties in any port in the state, if the tugs meet the requirements of the appropriate subchapter (i.e., Subchapter 1, San Francisco Bay Region; Subchapter 2, Los Angeles/Long Beach Harbor; Subchapter 3, Port Hueneme Harbor; Subchapter 4, Humboldt Bay; Subchapter 5, San Diego Harbor), of this Chapter 4 of the California Code of Regulations.
- (b) Any escort tug used to comply with the requirements of this subchapter, must meet crew standards as follows:
 - (1) An escort tug shall have a minimum of four persons on board including one certified tug master and two certified deck hands. The fourth person shall be a crew member capable of resolving mechanical difficulties aboard an escort tug in the event of an emergency;
 - (2) The requirement for four crew members does not preclude additional deck hands who are gaining experience for certification;
 - (3) The certified deck hands required under this subsection shall at all times be awake, alert and ready to respond during an escorted transit. The fourth person must be immediately available to respond to any mechanical difficulties aboard the escort tug. Immediate response may be assured by an alarm or other signaling device to wake or alert the fourth person to the emergency.
 - (a) The Administrator may review the equipment and crew on an escort tug to assure compliance with this provision. The Administrator may require that the fourth person be awake and alert and ready to respond if the tug operator does not provide adequate mechanism to assure that the fourth person is immediately available to respond to a mechanical difficulty.
 - (1) Working hours for escort crew members shall be limited to 15 hours in any 24-hour period, not

to exceed 36 hours during any 72-hour period except in an emergency or a drill. Working hours shall include any administrative duties associated with the tug whether performed on board the tug or on shore.

- (b) Training requirements for the crew of any escort tug used to comply with the requirements of this subchapter are as follows:
 - (1) to qualify for certification as the master or deck hand on an escort tug, an applicant must do all of the following;

(A) possess a current and valid U.S. Coast Guard Merchant Mariner's Document;

- (B) show proof of at least 960 hours on duty of prior service aboard a tug, at least 240 hours of which must have been in the San Francisco Bay region;
- (C) successfully complete an approved education program which covers the following topics;
 - 1. basic tugboat seamanship;
 - 2. line handling skills;
 - 3. communication systems;
 - 4. emergency response to the loss of steering or propulsion on an escorted tank vessel and on the escort tug itself.
- \circ in addition to the requirements of subsection 851.8(c)(1), certification as the master of an escort tug requires that the applicant also do the following:
 - (A) possess a U.S. Coast Guard license appropriate to the escort tug in service; and
 - (B) show proof of an additional 240 hours on duty of service aboard a tug in the San Francisco Bay region (for a total of 480 of the requisite 960 hours of service); and
 - (C) successfully complete an approved education program which covers knowledge of local waters, basic seamanship, and the use of the escort tug in reducing the risk of an escorted vessel's grounding or collision.
 - (2) individuals may be considered to have satisfied certain educational requirements without attending an education program, if they meet the following criteria:
 - (A) an individual with a U.S. Coast Guard rating of Able Seaman Special (OSV) is considered to have met the educational requirements in subsection 851.8(c)(1)(C) 1 and 2;

- (B) an individual with any Coast Guard license appropriate for the escort tug in service is considered to have met the educational requirements in subsections 851.8(c)(1)(C).
- (3) the Administrator shall review and approve the educational programs for masters and deck hands of escort tugs, and shall establish and maintain a list of all such approved programs:
 - (A) an educational program shall be approved if it provides the coursework required by this section, and can adequately train students in the requisite skills;
 - (B) a request for approval of a program shall be submitted to the Administrator in writing and shall include the following:
 - 1. a description of the course content and materials;
 - 2. the qualifications of the instructors;
 - 3. the estimated cost of the program to the students;
 - 4. a description of the site(s) where the course will be held, both classroom and field locations.
 - (C) the Administrator shall notify the applicant of approval or denial within 30 days of the submittal of the application;
 - 1. if the educational program is denied, the applicant will be notified of the reasons for denial and may resubmit the program for review after the deficiencies have been remedied;
 - 2. once approved, the educational program must be submitted for re-evaluation at least once every 5 years or when a significant change occurs in the course content or materials. The 5-year re-submittal shall include an updated description of course content, materials, cost, and instructor qualifications, as well as copies of student evaluations from classes conducted during the previous year;
 - 3. the Administrator may audit the course at any time to assure compliance with the requirements of this section.
- (4) The Administrator shall assure compliance with tug crew training and qualification requirements. Compliance with crew training and qualification requirements shall be verified as follows:
 - (A) tug owner/operators shall establish and maintain adequate documentation to verify the training and qualifications of individual crew members, and shall make this information available to the Administrator upon request;

- (B) the Administrator may review the owner/operator's documentation annually to assure compliance with this section;
- (C) the Administrator may request this documentation at any time.
- (c) The following equipment must be onboard an escort tug and in operable condition during all escorted transits;
 - (1) a line-throwing gun for use in Zone 1, with 300 feet of tag line. The tag line shall be of suitable strength and size for deploying the tow line;
 - (2) power line-handling equipment fore or aft for rapid, mechanically assisted deployment of lines. The primary line-handling equipment shall be in the position (fore or aft) best suited for the design of the particular tug in escort service;
 - (3) tow line with a breaking strength that is 2.5 times the certified braking force of the escort tug;
 - (4) a quick release device to be used when an escort tug is in a tethered mode;
 - (5) one working radar;
 - (6) fendering appropriate to absorb impact in skin-to-skin operations, and located at both the bow and stern to act as pivot points when pulling away from the tank vessel. In addition, the fendering must be sufficient to assure that there are no exposed corners, large holes or metal parts which could inflict damage on the escorted vessel, and must cover sufficient surface area to minimize sliding when working at an angle to the tank vessel.
- (d) Annual inspection of the escort tug's equipment:
 - (1) the owner/operator shall assure that the required equipment is on board and operable during all escorted transits;
 - (2) the Administrator shall verify that the required equipment is on board each escort tug, and in operable condition. This verification may be obtained by an annual inspection which may be announced or unannounced. In conducting such inspections, the Administrator shall be guided by the standards established by the American Waterways Operators (AWO) in their Responsible Carrier Program, Sections III and IV, dated 2/21/95.
- (f) Stability requirements for all escort tugs that operate westward of the Golden Gate Bridge are as follows:
 - (1) an escort tug shall have a load-line certificate; or
 - (2) an escort tug shall have a letter verifying stability issued by the American Bureau of Shipping or any member in the International Association of Classification Societies. The letter shall establish that the escort tug complies with the stability requirements outlined in federal Load Line

Regulations at 46 CFR, Sections 42.09-10(a), 42.09-15(a), (b), and (c) except subparagraphs (1) and (2), and 42.09-25 (a) and (b) except for the portion of the last line of (b) that reads "...and meeting applicable requirements in this subchapter"; and 46 CFR Sections 173.090, 173.095 and 174.145. A copy of this letter shall be kept on file with the Clearing House.

- (g) Stationing requirements for escort tugs:
 - (1) an escort tug shall not simultaneously engage in the escort of more than one tank vessel;
 - (2) escort tugs shall maintain a station-keeping distance of no more than 1000 feet ahead or aside, or 500 feet astern of the tank vessel while engaged in escort activity;
 - (3) escort tugs shall standby as the tank vessel transits Zones 3 and/or 5, as follows:
 - (A) the escort tug(s) shall standby in Zone 2 or 6 as the tank vessel transits Zone 5; and
 - (B) the escort tug(s) shall standby in Zone 2 or 4 as the tank vessel transits Zone 3; or
 - (C) the escort tug(s) may accompany the escorted tank vessel through Zone 3 and/or 5 in lieu of standing by.
 - o in Zone 1, the escort tug(s) shall be stationed as follows:
 - (A) on an inbound transit, the escort tug shall be in Zone 1 prior to the tank vessel's arrival to the area bounded by an arc eight nautical miles seaward of and centered on Mile Rocks Light; and
 - (B) on an outbound transit, the escort tug shall remain in Zone 1 until the tank vessel leaves the area bounded by an arc eight nautical miles seaward of and centered on Mile Rocks Light.
- (h) Escort transit log:
 - (1) escort tug masters shall keep a record in the ship's log of every escorted transit;
 - (2) the record of the escorted transit in the ship's log shall include information regarding the sequence of events during the transit, the crew assignments, any casualties that may occur, and any drills conducted.
- Note:Authority:Sections 8670.17.2(a) & 8670.23.1, Government Code.Reference:Section 8670.23.1, Government Code.
- "851.9 Tanker and Tug Matching Criteria, and Tanker Crew and Equipment Requirements"
- (a) Default Matrix Option for Matching Tugs to Tankers: The tug or tugs used for an escorted transit shall be able to provide sufficient braking force to stop the escorted tanker from a speed of 5 knots through

the water. The braking force of the tug(s) shall match the tanker's displacement, as indicated in the following matrix:

	Zones 1 and 2				Zones 4 and 6					
Assisting Current	slack	1 kt	2 kts	3 kts	4 kts	slack	1 kt	2 kts	3 kts	4 kts
Displacement*			Bra	aking Fo	rce in kip	s (1,000 p	ounds of	f force)		
0 to < 20	20	<u>20</u>	30	<u>40</u>	40	40	<u>50</u>	70	<u>90</u>	110
20 to < 30	20	<u>30</u>	40	<u>50</u>	60	50	<u>70</u>	90	<u>120</u>	160
30 to < 40	30	<u>40</u>	50	<u>60</u>	70	60	<u>90</u>	120	<u>160</u>	210
40 to < 50	30	<u>40</u>	60	<u>70</u>	90	70	<u>110</u>	150	<u>200</u>	250
50 to < 60	40	<u>60</u>	70	<u>90</u>	110	100	<u>140</u>	190	<u>250</u>	320
60 to < 80	50	<u>70</u>	90	<u>120</u>	140	120	<u>180</u>	250	<u>330</u>	420
80 to < 100	60	<u>80</u>	110	<u>140</u>	180	150	<u>220</u>	300	<u>400</u>	520
100 to < 120	70	<u>100</u>	130	<u>170</u>	210	180	<u>270</u>	370	<u>500</u>	650
120 to < 140	80	<u>110</u>	150	<u>190</u>	240	210	<u>310</u>	430	<u>580</u>	760
140 to < 160	90	<u>140</u>	190	<u>240</u>	310	240	<u>350</u>	490	<u>660</u>	860
160 to < 180	100	<u>150</u>	210	<u>270</u>	350	260	<u>390</u>	550	<u>740</u>	970
180 to < 200	110	<u>170</u>	230	<u>300</u>	390	**	**	**	**	**
200 to < 220	120	<u>180</u>	250	<u>330</u>	420	**	**	**	**	**

1,000 long tons

*

**

The channel depths in zones 4 and 6 limit vessels that may use the channel to those drawing less than 35 feet. This table does not address vessels in zones 4 and 6 with a displacement greater than 180,000 long tons because such vessels would draw more than 35 feet and would thus not be allowed into these zones.

- (1) Applicable current velocity: The current velocities shall be determined using the published tide and current tables developed and maintained by NOAA, and used by the pilots. The current velocity used shall be the one published for the estimated time of arrival at the points noted below. The estimated time of arrival shall include a window of 30 minutes before and after the scheduled arrival to account for possible delays or changes. Tank vessel operators are responsible for adjusting the estimated arrival time when it appears that it will fall outside of the originally estimated one hour window.
- (2) Location of current readings: The specific current velocity to be used in conjunction with the matrix shall be the published readings for the following locations:

- (A) The Golden Gate Bridge the predicted current velocity at the Golden Gate Bridge shall apply to vessels in zones 1 and 2 that are west of a north-south line drawn through the eastern tip of Alcatraz Island and terminating at Angel Island or to vessels in zones 1 and 2 that are west of the eastern entrance to Racoon Strait.
- (B) The Bay Bridge; west of Yerba Buena Island the predicted current velocity at the Bay Bridge shall apply to vessels in zone 2 that are south of an arc drawn from Alcatraz Island east to Treasure Island and east of the north-south line drawn through Alcatraz Island.
- (C) 1.25 miles north of Point Chauncey The predicted current velocity at 1.25 miles north of Pt. Chauncey shall apply to vessels in zone 2 that are north of an arc with a radius of 2.7 nautical miles centered at the intersection of the Bay Bridge and the San Francisco Peninsula drawn from Alcatraz Island east to Treasure Island and east of the north-south line drawn through the eastern tip of Alcatraz Island.
- (D) The San Mateo Bridge The predicted current velocity at the San Mateo Bridge shall apply to vessels while in zone 4.
- (E) The Carquinez Bridge the predicted current velocity in Carquinez Strait shall apply to vessels in zone 6.

How to use the Default Matrix Option for Matching Tugs to Tankers: The matrix provides current velocities for slack water, 1, 2, 3, and 4 knots. The slack water column shall be used only when the water is truly slack. The 1 knot column shall be used for any velocity above 0 and equal to 1. The 2 knot column shall be used for any velocity above 1 and equal to 2, and so on up to the 4 knot maximum.

In those situations where the current velocity is above 4 knots, such as may occur at the Golden Gate, the tank vessel requiring an escort tug shall reschedule the transit to a time when the current velocity drops to 4 knots or below.

- (b) Alternative To The Default Matrix for Matching Tugs to Tankers: Measurement methodologies other than those used to establish the Default Matrix may be used instead of, or in addition to, the Matrix as follows;
 - (1) Alternate Compliance Model for Escort Tugs: Tug owner/operators may propose an alternate method for measuring the braking force of any tug (in kips). Such alternate method may be used to demonstrate that the tug can provide higher steering or braking forces (in kips) than the simple bollard pull measurement would indicate. An alternate measurement may only be submitted once in any 12 month period and shall comply with the following:
 - (A) the owner/operator shall assure that the following are included when developing a methodology for calculating an alternate braking force for a given escort tug:
 - 1. the alternate measurement is conducted from a starting speed of 10 knots for zones 1 and 2, and 8 knots for zones 4 and 6;

- 2. the escort tug is not required to exceed the limits of its ability to generate the forces, and in no instance submerges the deck edge to achieve the alternate measurement;
- 3. the escort tug operates all its equipment at or below the manufacturer's recommended guidelines for the safe working load of the tug;
- 4. unless demonstrated otherwise by full scale testing, all machinery shall be assumed to operate at or below performance levels published by the manufacturer;
- 5. any current bollard pull values registered with the Clearing House shall be utilized where appropriate in any formulas or models;
- 6. any known condition that would impair the escort tug's ability to perform shall be included in the calculation.
- (B) the measurement must be conducted by a marine architect or engineer approved by the Administrator;
 - 1. the tug owner/operator shall submit the name of the marine architect or engineer to the Administrator for approval prior to having that individual or his/her company conduct an alternate measurement.
 - 2. the Administrator shall approve a marine architect or engineer if that person has demonstrated the education, knowledge and experience necessary to conduct the testing and modeling of tug capabilities and braking force.
- (C) the alternate model and the resultant measurements shall be approved by the Administrator before the alternate model may be used to match a tanker to a tug or tugs. The Administrator shall approve the alternate model if it provides both of the following:
 - 1. a higher force (in kips) than the simple bollard pull measurement would indicate; and
 - 2. at least the same level of protection as the braking forces established in the default matrix.
- (D) after an alternate model is approved, the Administrator shall provide the Clearing House with the new braking force measurements for the subject tug(s). The new measurements shall be used with the Default Matrix established in this section.
- (2) Alternate Compliance Model for Tankers: Tanker owner/operators may develop a model for the vessels in their fleet relative to the steering and braking demands of the vessels, and the braking capabilities of tugs. The steering and braking demands established by the alternate model may be used instead of the Default Matrix to match escort tugs to the tankers. An alternate compliance model may only be submitted once in any 12-month period and shall comply with the following:

- (A) the measurement must be conducted by a marine architect or engineer approved by the Administrator. The tanker owner/operator shall submit the name of the marine architect or engineer to the Administrator for approval prior to having that individual or his/her company conduct an alternate model;
 - 1. the Administrator shall approve a marine architect or engineer if that person has demonstrated the education, knowledge and experience necessary to conduct the testing and modeling of tug capabilities and braking force.
- (B) the alternate model and the resultant measurements shall be approved by the Administrator before the alternate model may be used to match a tanker to a tug or tugs. The Administrator shall approve the alternate model if the following conditions are met:
 - 1. under the alternate model the tanker can complete a safe transit, staying within the 95th percentile of constraint as established in "The San Francisco Bay Tanker Escort Study", dated 7/95, prepared by Glosten Associates; and
 - 2. the alternate model provides at least the same level of protection as the braking forces established in the Default Matrix, and can be achieved using no more than three tugs as required in subsection 851.9(d).
- (C) After an alternate model is approved, the Administrator shall provide the Clearing House with the tanker demand in kips which corresponds to the tanker's displacement and speed under the approved alternate model.
- (c) The Administrator may allow deviations from compliance for the matching of tugs to laden tankers when these vessels make short transits from berth to berth within a zone and are assisted by docking tugs and transiting at speeds less than 8 knots.
 - (1) The tanker master or owner/operator shall make a request for such deviations to the Administrator through the Clearing House at least 24 hours prior to the desired shift.
 - (2) The Administrator shall approve or deny the deviation request by verbally notifying the Clearing House within 12 hours of the request. A written confirmation shall follow within 24 hours.
- (d) Maximum number of tugs to be used during an escorted transit:
 - (1) the tanker must be accompanied by a sufficient number, but no more than three tugs to provide the braking forces specified in this section;
- (e) Speed limits for tankers are as follows:

Appendix F

- (1) tankers that use the Default Matrix as provided in this section, shall not proceed at a speed in excess of 10 knots through the water in Zones 1, 2, 3 and 5, nor more than 8 knots through the water in Zones 4 and 6, with the following qualifications:
 - (A) the speed or speeds selected by the tanker for the transit must permit stationing the escort tug(s) to allow the tug(s) to effectively influence the tanker's movement in the event of a casualty;
 - (B) the tanker shall proceed at a safe speed. The determination of a safe speed shall include, but not be limited to;
 - 1. environmental factors such as the depth of the water, visibility, wind conditions, and the speed of the tidal currents; and
 - 2. proximity of other vessel traffic and any other vessels at anchor.
 - (C) Tankers shall in any case have their engines ready for immediate maneuver and shall not operate in any control modes or with fuels that prevent an immediate response to an engine order.
- (2) tank vessels may be exempt from the speed limits specified in subsection 851.9(e)(1) if they establish and use an approved alternate compliance model for determining the steering and braking demands of their vessels, as provided in this section. In such cases, the speed limit will be that used to establish the alternate compliance model, and must be specified in the Escort Plan, or on the Checklist.
- (f) Crew requirements:
 - (1) a tanker shall have sufficient and qualified line-handling-capable crew members standing by and available to immediately receive lines from each escort tug. These crew shall be stationed proximate to the lines, and shall not be assigned duties that would interfere with their ability to immediately respond to an emergency situation;
 - (2) the tanker shall comply with all applicable federal regulations relating to anchor readiness;
 - (3) tankers shall have sufficient and qualified supervisors to provide direct supervision of linehandling crew operations. Supervisors shall have direct radio communication capability with the bridge of the tanker.
- (g) Equipment requirements:
 - (1) each tanker shall have deck chocks and bitts that are of sufficient size, strength, and number to accommodate the anticipated braking force of the escort tug(s);
 - (2) the tanker owner/operator shall indicate the location and strength of the bitts and chocks in the Escort Plan for each vessel.

Appendix F

Note: Authority: Sections 8670.17.2(a) & 8670.23.1(d), Government Code. Reference: Section 8670.23.1(e)(1), Government Code

- "851.9.1 Barge and Tug Matching Criteria, and Barge Crew and Equipment Requirements"
 - (a) A barge must be accompanied by a sufficient number, but no more than three tugs to provide the braking force specified in this section;
 - (1) the line-haul tug which provides the power to push or tow a barge shall not become an escort tug during the course of a transit unless the line-haul tug has been relieved of its duties as the primary towing vessel, and replaced with another tug that serves as primary towing vessel.
 - (2) any line-haul tug that does become the escort tug after being relieved of all line-haul duties, must meet all the requirements for escort tugs as specified in this subchapter.
 - (b) The tug or tugs used to escort a barge must be able to provide sufficient braking force to stop the barge, measured as follows:
 - (1) the braking force shall be measured as the escort tug's astern static bollard pull;
 - (2) the escort tug shall have total astern static bollard pull in pounds equal to, not less than, the barge's deadweight tonnage;
 - (c) A barge shall not exceed 8 knots through the water during an escorted transit.
 - (d) Crew Requirements:
 - (1) A barge shall have sufficient and qualified line-handling-capable deck hands onboard the barge, standing by and available to receive lines from each escort tug;

- (A) the deck hands for the barge shall be made available from the line-haul tug;
- (B) in the interest of crew safety, when entering or leaving Zone 2 bound to or from the sea (Golden Gate Bridge), crew transfers to or from the barge may be made in the vicinity of Alcatraz Island;
- (C) when a barge is fitted with an emergency tow wire, or comparable mechanical device of sufficient strength and handling characteristics to control the barge, or the escort tug is made fast to the barge, deck hands shall not be required on board the barge.
- (2) Barges shall have sufficient and qualified supervisors to provide direct supervision of line-handling crew operations. Supervisors shall have direct radio communication capability with the bridge of the tug that is towing the barge.
- (e) Equipment requirements:
 - (1) each barge shall have deck chocks and bitts that are of sufficient size, strength and number to accommodate the anticipated braking force of the escort tug(s);
 - (2) the barge owner/operator shall indicate the location and strength of the bitts and chocks in the Escort Plan for each vessel or on the Checklist for each transit.
- Note:Authority:Sections 8670.17.2(a) & 8670.23.1(d), Government Code.Reference:Section 8670.23.1(e)(1), Government Code
- "851.10 Penalties

Any person who knowingly, intentionally or negligently violates any provision of this subchapter shall be subject to criminal, civil, and/or administrative civil actions as prescribed in Article 9, Government Code, beginning with Section 8670.57.

Note: Authority: Sections 8670.17.2(a) & 8670.23.1, Government Code. Reference: Sections 8670.23.1 and Sections 8670.57 through 8670.69.6, Government Code.

"851.10.1 Requests for Redetermination"

The owner/operator of a tank vessel or an escort tug may request redetermination of an action taken relative to an inadequacy decision or conditional approval of an Escort Plan or Checklist, denial or revocation of approval of an educational program, or application for use of an alternative compliance model. A request for redetermination must be submitted in writing and shall be processed as follows:

- (a) the request must be submitted to the Administrator within 15 calendar days from the date of the decision being disputed;
- (b) the request must contain the basis for the redetermination and, if available, provide evidence which rebuts the basis for the decision;
- (c) within 15 calendar days following the receipt of the request for redetermination, a notice shall be sent indicating that the Administrator shall adhere to the earlier decision or that the decision has been modified or rescinded.
- Note: Authority: Sections 8670.17.2(a) and 8670.23.1, Government Code. Reference: Sections 8670.23.1 and Sections 8670.57 through 8670.69.6, Government Code.

San Francisco Region Certified Escort Vessels

Tug	Boat ID	LOA	Propulsion System	Number	Rudders	Flanking Rudders	Kips Zones 1 & 2	Kips Zones 4 & 6	Certification Expires
AmNav Maritime	Services								
AVENGER	ANAV	94.8	Conventional, Open	2	2	0	36.49	36.49	01-Jan-2103
ENTERPRISE	ANEN	110	Conventional, Open	2	2	0	61.46	61.46	01-Jan-2103
INDEPENDENCE	ANIN		Z-Drive	2	0	0	135.14	135.14	01-Jan-2103
LIBERTY	ANLB	95.2	Z-Drive	2	0	0	79.47	79.47	01-Jan-2103
PATRICIA ANN	ANPA	78	Z-Drive	2	0	0	139.19	139.19	01-Jan-2103
PATRIOT	ANPT	87.9	Conventional, Open	2	2	0	65.98	65.98	01-Jan-2103
REVOLUTION	ANRV	78	Z-Drive	2	0	0	131.73	131.73	01-Jan-2103
SANDRA HUGH	ANSH	94	Z-Drive	2	0	0	135.04	135.04	01-Jan-2103
Baydelta Maritime	9								
DELTA BILLIE	BDDB	93	Z-Drive	2	0	0	266.00	264.00	01-Jan-2103
DELTA CATHRYN	BDCN	93	Z-Drive	2	0	0	266.00	264.00	01-Jan-2103
DELTA DEANNA	BDDD	105	Z-Drive	2	0	0	188.00	171.00	01-Jan-2103
DELTA LINDA	BDLA	105	Z-Drive	2	0	0	188.00	171.00	01-Jan-2103
Crowley Marine S	ervices								
GOLIAH	CMGA	105	Z-Drive	2	0	0	188.00	171.00	01-Jan-2103
GUARD	CMGU	120	Cycloidal	2	0	0	210.00	190.00	01-Jan-2103

Friday, May 11, 2012

Page 1 of 3

Vessels with an expiration date after January 1, 2100 are participants in the Escort Tug Inspection Program. So long as a vessels standing in the Escort Tug Inspection Program is maintained, its certification will not expire.

Appendix G

Tug	Boat ID	LOA	Propulsion System	Number	Rudders	Flanking Rudders	Kips Zones 1 & 2	Kips Zones 4 & 6	Certification Expires
TIOGA	CMTI	85	Z-Drive	2	0	0	133.00	115.00	01-Jan-2103
Foss Maritime	Foss Maritime								
AMERICA	FMAA	98	Z-Drive	2	0	0	248.00	225.00	01-Jan-2103
ARTHUR FOSS	FMAR	102	Cycloidal	2	0	0	188.00	153.00	01-Jan-2103
BRYNN FOSS	FMBF	100	Cycloidal	2	0	0	140.00	134.00	01-Jan-2103
KEEGAN FOSS	FMKF	110	Conventional, Kort	2	2	4	73.31	73.31	01-Jan-2103
LYNN MARIE	FMLM	98	Z-Drive	2	0	0	210.00	200.00	01-Jan-2103
MARSHALL FOSS	FMMF	92.2	Z-Drive	2	0	0	210.00	200.00	01-Jan-2103
POINT FERMIN	FMPF	32	Conventional, Open	2	2	0	44.79	44.79	01-Jan-2103
POINT VICENTE	FMPV	105	Conventional, Open	2	3	0	47.05	47.05	01-Jan-2103
Oscar Niemeth Tov	ving								
SILVER EAGLE	ONSI	102.5	Z-Drive	2	2	0	104.06	104.06	20-Jul-12
Starlight Marine So	ervices,	Inc.							
JOHN QUIGG	STJQ	76	Z-Drive	2	0	0	91.05	91.05	01-Jan-2103
MILLENNIUM DAWN	STMD	105	Z-Drive	2	0	0	181.00	168.00	01-Jan-2103
MILLENNIUM	STMF	105	Z-Drive	2	0	0	181.00	168.00	01-Jan-2103
MILLENNIUM STAR	STMS	105	Z-Drive	2	0	0	181.00	168.00	01-Jan-2103
ROYAL MELBOURNE	STRM	77.4	Conventional, Open	2	2	0	38.21	38.21	01-Jan-2103
TIM QUIGG	STTQ	80	Z-Drive	2	0	0	90.35	90.35	01-Jan-2103
Z-FIVE	STZ5	95	Z-Drive	2	0	0	128.00	132.00	01-Jan-2103

Friday, May 11, 2012

Page 2 of 3

Vessels with an expiration date after January 1, 2100 are participants in the Escort Tug Inspection Program. So long as a vessels standing in the Escort Tug Inspection Program is maintained, its certification will not expire.

Appendix G

Tug	Boat ID	LOA	Propulsion System	Number	Rudders	Flanking Rudders	Kips Zones 1 & 2	Kips Zones 4 & 6	Certification Expires
Z-FOUR	STZ4	95	Z-Drive	2	0	0	128.00	132.00	01-Jan-2103
Z-THREE	STZ3	95	Z-Drive	2	0	0	128.00	132.00	01-Jan-2103
Westar Marine Services									
BEARCAT	WSBC	69	Conventional, Open	2	2	0	18.79	18.79	01-Jan-2103
ORION	WSOR	100	Conventional, Open	2	2	0	43.79	43.79	01-Jan-2103
SAGITTARIAN	WSSA	79	Conventional, Open	2	2	0	42.33	42.33	01-Jan-2103
SCORPIUS	WSSC	124	Conventional, Kort	2	4	0	74.94	74.94	01-Jan-2103
TAURUS	WSTS	69	Conventional, Kort	2	2	0	25.04	25.04	01-Jan-2103

Friday, May 11, 2012

Page 3 of 3

Vessels with an expiration date after January 1, 2100 are participants in the Escort Tug Inspection Program. So long as a vessels standing in the Escort Tug Inspection Program is maintained, its certification will not expire.

San Francisco Bay Clearinghouse Report For 2011

San Francisco Bay Region Totals

	<u>2011</u>		<u>2010</u>	
Tanker arrivals to San Francisco Bay	776		699	
Barge arrivals to San Francisco Bay	327		371	
Total Tanker and Barge Arrivals	1,103		1,070	
Tank ship movements & escorted barge movements	3,571		3,528	
Tank ship movements	2,313	64.77%	2,070	58.67%
Escorted tank ship movements	1,186	33.21%	925	26.22%
Unescorted tank ship movements	$1,\!127$	31.56%	$1,\!145$	32.45%
Tank barge movements	1,258	35.23%	$1,\!458$	41.33%
Escorted tank barge movements	500	14.00%	683	19.36%
Unescorted tank barge movements	758	21.23%	775	21.97%

Percentages above are percent of total tank ship movements & escorted barge movements for each item.

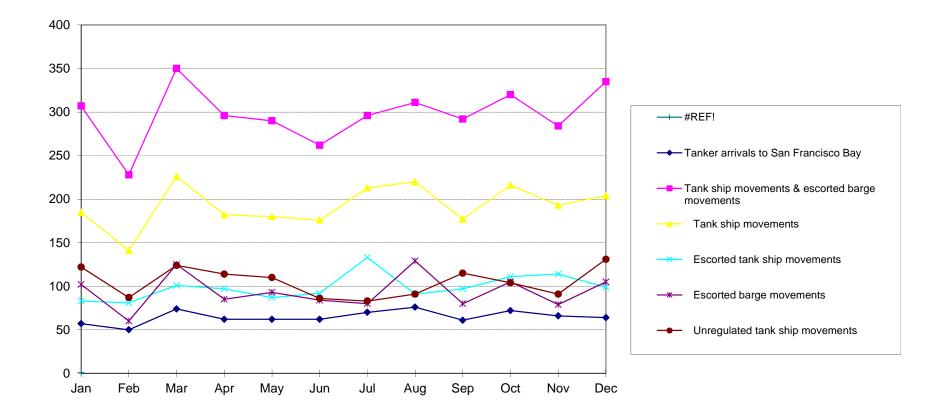
Escorts reported to OSPR	
--------------------------	--

6

3

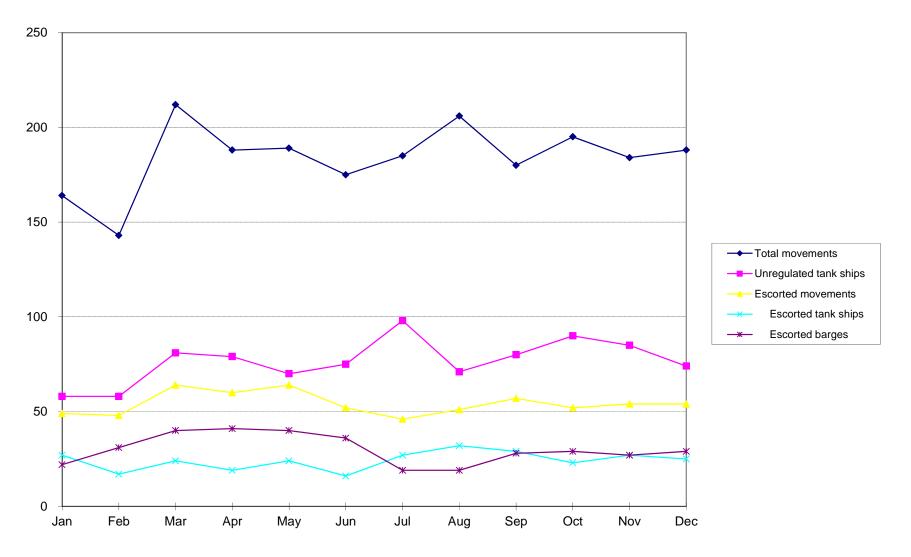
Movements by Zone	Zone 1	%	Zone 2	%	Zone 4	%	Zone 6	%	Total	%
Total movements	2,209		3,413		0		1,533		7,155	
Unescorted movements	1,558	70.53%	2,286	66.98%	0	0.00%	911	59.43%	4,755	66.46%
Tank ships	919	41.60%	1,173	34.37%	0	0.00%	484	31.57%	$2,\!576$	36.00%
Tank barges	639	28.93%	1,113	32.61%	0	0.00%	427	27.85%	$2,\!179$	30.45%
Escorted movements	651	29.47%	1,127	33.02%	0	0.00%	622	40.57%	2,400	33.54%
Tank ships	290	13.13%	456	13.36%	0	0.00%	257	16.76%	1,003	14.02%
Tank barges	361	16.34%	671	19.66%	0	0.00%	365	23.81%	1,397	19.52%

Notes:

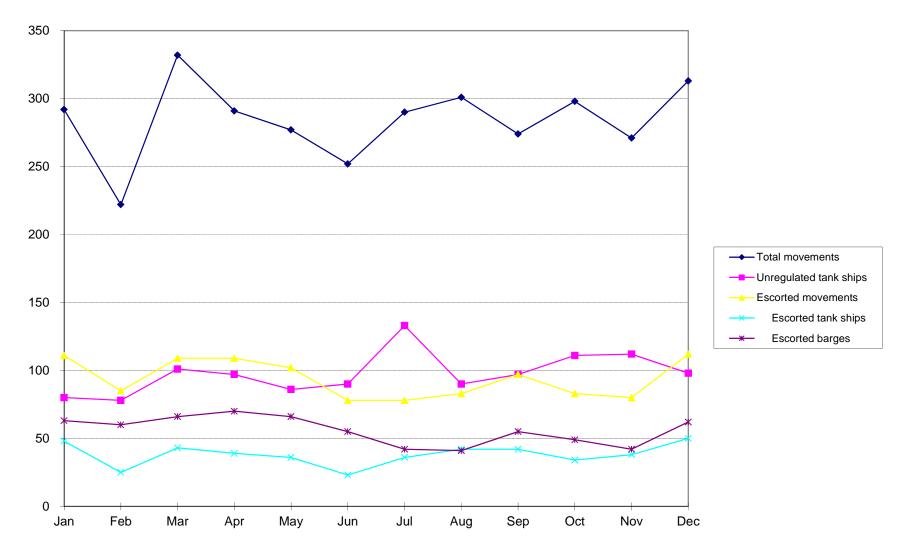

1. Information is only noted for zones where escorts are required.

2. All percentages are percent of total movements for the zone.

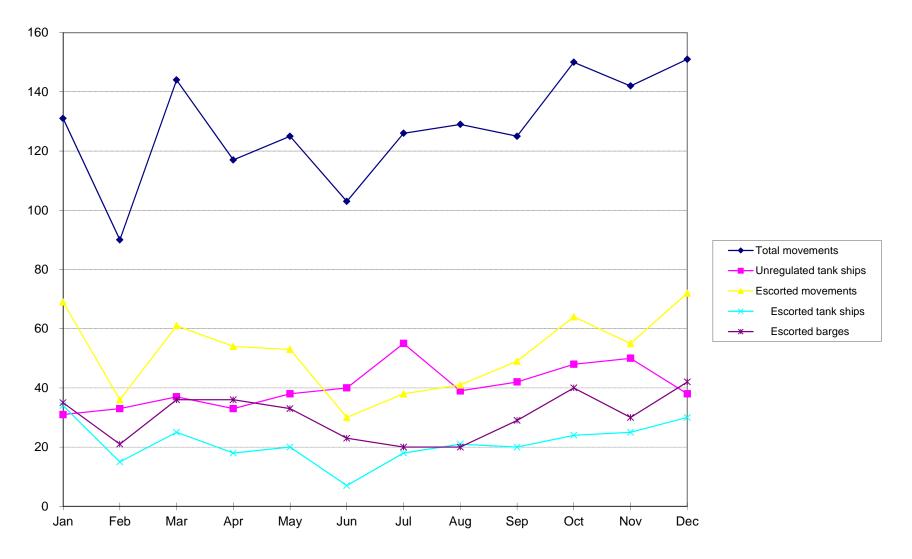
3. Every movement is counted in each zone transited during the movement.


4. Total movements is the total of all unescorted movements and all escorted movements.

Total Escort Movements in San Francisco Bay for 2011


180 SF HSC Plan approved June 14, 2012

Zone 1 Totals for 2011


181 SF HSC Plan approved June 14, 2012

Zone 2 Totals for 2011

182 SF HSC Plan approved June 14, 2012

Zone 6 Totals for 2011

183 SF HSC Plan approved June 14, 2012

Appendix I OSSPR Office of Spill Prevention and Response

Harbor Safety Committee of the San Francisco Bay Region Clearing House

c/o Marine Exchange of the San Francisco Bay Region 505 Beach Street, Suite 300 San Francisco, California 94133-1131 415-441-6600 fax 415-441-3080 hsc@sfmx.org

Comparative Vessel Movement Totals

	2009	2010	2011
Total vessel arrivals	3,594	3,541	3,703
Total vessel interbay shifts	2,217	2,038	1,758
Total tanker arrivals	1,304	1,174	1,103
Total tanker interbay shifts	1,178	1,572	1,367

2011 Tank Vessel Arrivals

NAME	FLAG	Туре	DWT	LOA	Arrivals
ACTION	MLT	CRUDE OIL TANKER	115,915	249	1
AEGEAN WAVE	HKG	PRODUCT TANKER	51,510	183	2
AFRODITI	LBR	CRUDE OIL TANKER	159,000	274	2
ALASKAN FRONTIER	USA	CRUDE OIL TANKER	193,050	287	1
ALASKAN LEGEND	USA	CRUDE OIL TANKER	193,048	290	1
ALPINE MARIE	PAN	PRODUCT TANKER	48,005	180	1
ALTAIR VOYAGER	BHS	CRUDE OIL TANKER	135,829	259	1
AMBA BHARGAVI	IND	CRUDE OIL TANKER	106,094	244	2
AMERICAN PROGRESS	USA	PRODUCT TANKER	46,095	198	2
ANAFI	GRC	LIQUID GAS CARRIER	26,577	174	1
ANDES	GRC	PRODUCT TANKER	68,467	228	4
ANNA VICTORIA	BHS	PRODUCT TANKER	74,999	228	3
ANTIPOLIS	GRC	PRODUCT TANKER	74,543	229	4
AQUALEADER	LBR	CRUDE OIL TANKER	115,669	249	1
ARAFURA SEA	SGP	CRUDE OIL TANKER	105,856	248	2
ARCTIC	LBR	CRUDE OIL TANKER	163,216	274	1
ARGENT BLOOM	PAN	CHEMICAL/OIL TANKER	33,609	170	1
ASHLEY SEA	LBR	CRUDE OIL TANKER	73,870	229	1
ASTRO PHOENIX	GRC	CRUDE OIL TANKER	159,251	274	3
ATLANTIC BREEZE	HKG	CHEMICAL/OIL TANKER	47,128	183	1
ATLANTIC LILY	HKG	PRODUCT TANKER	47,128	183	1
ATLANTIC PISCES	HKG	CHEMICAL/OIL TANKER	47,128	183	2
AVOR	MLT	CRUDE OIL TANKER	115,867	250	7
AYANE	TUR	PRODUCT TANKER	16,971	144	1
AZALEA GALAXY	PAN	CHEMICAL/OIL TANKER	19,999	148	5
AZOV SEA	LBR	CHEMICAL/OIL TANKER	47,400	183	3
BALTIC CHAMPION	MLT	CHEMICAL/OIL TANKER	37,333	183	1
BEECH GALAXY	HKG	CHEMICAL/OIL TANKER	19,998	146	3

BLUE	MLT	CRUDE OIL TANKER	156,643	274	1
BLUE JADE	SGP	CHEMICAL/OIL TANKER	51,291	183	1
BLUE SEA	LBR	CRUDE OIL TANKER	105,416	229	2
BRITISH MALLARD	IOM	CRUDE OIL TANKER	11,476	250	1
BRUSSELS	BEL	LIQUID GAS CARRIER	26,943	169	2
BUM CHIN	HKG	CHEMICAL/OIL TANKER	19,991	146	3
BUM EUN	HKG	CHEMICAL TANKER	19,500	145	2
BUM SHIN	MHL	CHEMICAL/OIL TANKER	19,997	148	4
BW SHINANO	SGP	PRODUCT TANKER	69,999	229	1
CABO HELLAS	MHL	PRODUCT TANKER	69,636	228	4
CABO PILAR	PAN	PRODUCT TANKER	69,250	228	1
CABO SOUNION	MHL	CRUDE OIL TANKER	69,636	228	1
CALIFORNIA VOYAGER	USA	CHEMICAL/OIL TANKER	45,671	183	7
CAPE ASPRO	CYP	CRUDE OIL TANKER	105,405	244	2
CAPE BACTON	MHL	CHEMICAL/OIL TANKER	35,156	176	1
CAPRICORN VOYAGER	BHS	CRUDE OIL TANKER	104,611	244	2
CARIBBEAN GALAXY	PAN	CRUDE OIL TANKER	111,402	246	6
CARMEL	GRC	CRUDE OIL TANKER	104,955	244	1
CARPE DIEM II	MHL	CHEMICAL/OIL TANKER	25,175	170	1
CASTOR VOYAGER	BHS	CRUDE OIL TANKER	104,866	244	1
CEDAR GALAXY	PAN	CHEMICAL TANKER	19,983	144	1
CHALLENGE POLARIS	SGP	PRODUCT TANKER	45,988	180	2
CHAMPION	NIS	CHEMICAL/OIL TANKER	36,955	182	1
CHAMPION PACIFIC	NIS	PRODUCT TANKER	33,886	183	1
CHAMPION PIONEER	NOR	CHEMICAL/OIL TANKER	39,468	176	3
CHAMPION TIDE	NIS	CHEMICAL/OIL TANKER	40,727	181	1
CHAMPION TRADER	GBR	CHEMICAL/OIL TANKER	40,727	178	1
CHAMPION TRUST	NOR	CHEMICAL/OIL TANKER	39,999	181	1
CHANG HANG HONG TU	CHN	PRODUCT TANKER	45,765	185	1
CHANTAL	LBR	PRODUCT TANKER	74,329	228	3
CHEMBULK HONGKONG	SGP	CHEMICAL TANKER	32,315	174	1

CHEMBULK JAKARTA	PAN	CHEMICAL/OIL TANKER	19,935	141	2
CHEMBULK KINGS POINT	PAN	CHEMICAL/OIL TANKER	19,928	141	1
CHEMBULK LINDY ALICE	PAN	CHEMICAL TANKER	33,674	170	1
CHEMBULK SAVANNAH	SGP	CHEMICAL TANKER	24,404	153	2
CHEMBULK VIRGIN GORDA	SGP	CHEMICAL/OIL TANKER	34,614	170	2
CHEMTRANS MOON	LBR	PRODUCT TANKER	72,365	229	1
CHEMTRANS SEA	LBR	PRODUCT TANKER	72,365	229	2
CHEMTRANS SKY	LBR	PRODUCT TANKER	63,381	229	1
CHEMTRANS STAR	LBR	CRUDE OIL TANKER	63,331	228	1
CHERRY GALAXY	PAN	CHEMICAL/OIL TANKER	19,364	147	6
CHIMBORAZO	ECU	CRUDE OIL TANKER	66,138	228	1
CLAXTON BAY	HKG	CHEMICAL TANKER	36,400	182	2
CLIPPER AYA	PAN	CHEMICAL TANKER	14,304	134	1
CLIPPER DAISY	MHL	PRODUCT TANKER	12,756	124	1
CLIPPER KLARA	BHS	CHEMICAL/OIL TANKER	11,283	116	1
COMMANDER	LBR	CRUDE OIL TANKER	49,995	228	1
CONFIDENCE	LBR	CRUDE OIL TANKER	71,024	228	2
CYGNUS VOYAGER	BHS	CRUDE OIL TANKER	156,836	274	39
CYPRESS GALAXY	PAN	CHEMICAL/OIL TANKER	19,998	148	1
DELTA COMMANDER	GRC	CRUDE OIL TANKER	157,477	274	1
DEVON	GRC	CRUDE OIL TANKER	157,642	275	1
DIAMOND ORCHID	SGP	CHEMICAL TANKER	19,702	144	1
EAGLE MELBOURNE	SGP	PRODUCT TANKER	50,000	182	3
ELM GALAXY	PAN	CHEMICAL TANKER	19,305	148	2
EMMA VICTORY	NIS	CHEMICAL/OIL TANKER	40,727	180	1
ENERGY CENTURY	IOM	CRUDE OIL TANKER	70,201	228	3
ENERGY CHANCELLOR	IOM	PRODUCT TANKER	70,558	228	2
ENERGY COMMANDER	IOM	CRUDE OIL TANKER	70,681	228	4
ENERGY CONQUEROR	IOM	CRUDE OIL TANKER	70,616	228	3
ENERGY PATRIOT	IOM	CHEMICAL/OIL TANKER	46,583	183	2
ENERGY PRIDE	IOM	PRODUCT TANKER	51,318	183	1

ERIK SPIRIT	BHS	CRUDE OIL TANKER	115,525	250	2
ESER K.	MHL	PRODUCT TANKER	115,277	250	5
ETERNAL DILIGENCE	PAN	PRODUCT TANKER	74,994	228	1
EUGENIE	GRC	CRUDE OIL TANKER	157,672	275	1
EUPEN	BEL	LIQUID GAS CARRIER	29,121	180	5
EVEREST SPIRIT	BHS	CRUDE OIL TANKER	115,047	250	2
FEDOR	MHL	CRUDE OIL TANKER	70,156	228	3
FIDELITY	LBR	CRUDE OIL TANKER	71,049	229	1
FLORIDA VOYAGER	USA	PRODUCT TANKER	46,069	183	37
FR8 PRIDE	MHL	CRUDE OIL TANKER	74,035	229	1
FRONT GLORY	MHL	CRUDE OIL TANKER	149,834	269	1
FRONT MELODY	LBR	CRUDE OIL TANKER	150,500	262	1
FRONT PRIDE	MHL	CRUDE OIL TANKER	149,686	269	1
FUJI GALAXY	MHL	CHEMICAL/OIL TANKER	25,000	160	3
GALAHAD	BRB	CHEMICAL TANKER	44,996	183	1
GAN-VOYAGER	BHS	CHEMICAL/OIL TANKER	46,700	183	1
GAS ORIENTAL	MLT	LIQUID GAS CARRIER	26,534	174	6
GENMAR GEORGE T.	MHL	CRUDE OIL TANKER	149,847	274	1
GENMAR HORN	MHL	CRUDE OIL TANKER	159,539	274	1
GENMAR KARA G.	LBR	CRUDE OIL TANKER	150,296	274	1
GENMAR PHOENIX	MHL	CRUDE OIL TANKER	153,015	269	2
GENMAR SPARTIATE	MHL	CRUDE OIL TANKER	165,000	274	2
GINGA BOBCAT	PAN	CHEMICAL TANKER	26,073	160	1
GINGA CARACAL	PAN	CHEMICAL TANKER	26,015	160	2
GINGA LION	PAN	CHEMICAL TANKER	25,451	154	1
GINGA MERLIN	PAN	CHEMICAL TANKER	19,999	147	1
GINGA SAKER	PAN	CHEMICAL TANKER	19,996	148	1
GINGA TIGER	PAN	CHEMICAL TANKER	25,452	160	1
GLENDA MELANIE	LBR	CHEMICAL/OIL TANKER	47,162	183	1
GOLDEN STATE	USA	CHEMICAL/OIL TANKER	49,000	183	12
GULF PEARL	BHS	CHEMICAL/OIL TANKER	74,999	228	3

HARBOUR CLEAR	BHS	CHEMICAL TANKER	14,132	138	2
HELGA SPIRIT	BHS	CRUDE OIL TANKER	114,780	250	1
HELLAS ENDURANCE	GRC	PRODUCT TANKER	46,144	183	1
HELLAS PROGRESS	GRC	PRODUCT TANKER	46,152	183	1
HELLESPONT PROMISE	LBR	PRODUCT TANKER	73,669	229	1
HERCULES	HKG	CHEMICAL/OIL TANKER	51,218	183	1
HIGH ENTERPRISE	PAN	PRODUCT TANKER	45,967	180	5
HIGH MARS	HKG	CHEMICAL/OIL TANKER	51,542	183	1
HIGH SATURN	HKG	PRODUCT TANKER	51,528	183	1
HIGH VENTURE	LBR	CHEMICAL/OIL TANKER	51,302	183	1
HS CARMEN	LBR	CRUDE OIL TANKER	113,033	250	1
IBLEA	LBR	CRUDE OIL TANKER	10,584	240	3
ICE BASE	CYP	PRODUCT TANKER	63,605	228	1
ICE BLADE	CYP	PRODUCT TANKER	63,599	228	1
ICE BLIZZARD	CYP	PRODUCT TANKER	63,589	228	1
ICE VICTORY	LBR	CRUDE OIL TANKER	70,372	229	1
INCA	GRC	PRODUCT TANKER	68,467	228	2
IRENE	PAN	CHEMICAL TANKER	11,912	131	1
IVER EXAMPLE	NLD	PRODUCT TANKER	46,784	183	3
IVY GALAXY	HKG	CHEMICAL TANKER	19,500	146	1
KAMARI	GRC	CRUDE OIL TANKER	156,853	274	1
KING DARIUS	MHL	PRODUCT TANKER	73,634	229	3
KING DUNCAN	MHL	PRODUCT TANKER	73,720	229	4
KISOGAWA	PAN	CHEMICAL TANKER	17,739	140	1
KODIAK	USA	CRUDE OIL TANKER	124,822	252	12
LAUREL GALAXY	PAN	CHEMICAL/OIL TANKER	19,805	143	4
LAUREN	PAN	CHEMICAL TANKER	12,003	131	1
LEOPARD	PAN	PRODUCT TANKER	47,350	180	1
LIAN SHUN HU	CHN	CRUDE OIL TANKER	71,956	229	1
LIAN XING HU	CHN	CRUDE OIL TANKER	75,504	229	1
LIME GALAXY	HKG	CHEMICAL TANKER	19,992	146	4

LOVINA	GRC	CRUDE OIL TANKER	89,999	244	2
LUIGI LAGRANGE	ITA	LIQUID GAS CARRIER	29,190	180	5
LYNDA VICTORY	NIS	CHEMICAL/OIL TANKER	40,727	181	1
MAERSK BERING	SGP	CHEMICAL/OIL TANKER	29,058	176	19
MAERSK MIZUSHIMA	PAN	PRODUCT TANKER	45,996	180	1
MAHANADI SPIRIT	BHS	CHEMICAL/OIL TANKER	44,996	182	3
MAPLE GALAXY	PAN	CHEMICAL/OIL TANKER	19,386	148	3
MARE CARIBBEAN	MHL	PRODUCT TANKER	46,700	183	1
MARE DORICUM	ITA	CRUDE OIL TANKER	157,667	274	1
MARE PACIFIC	MHL	PRODUCT TANKER	68,467	229	1
MAX JACOB	LBR	CRUDE OIL TANKER	157,449	274	1
MAYA	GRC	CRUDE OIL TANKER	68,500	228	3
MEKONG STAR	IOM	CHEMICAL TANKER	37,872	184	2
MERCINI LADY	LBR	PRODUCT TANKER	47,396	182	1
MERIOM TOPAZ	MHL	CHEMICAL/OIL TANKER	50,319	183	3
MILTIADIS M II	LBR	CRUDE OIL TANKER	162,936	280	1
MINDANAO	SGP	CRUDE OIL TANKER	149,999	274	4
MINDORO	GRC	CRUDE OIL TANKER	99,998	244	2
MISSISSIPPI VOYAGER	USA	PRODUCT TANKER	46,094	183	30
MOSCOW	LBR	CRUDE OIL TANKER	106,553	243	2
MOSCOW SEA	LBR	CHEMICAL/OIL TANKER	47,363	182	5
MURRAY STAR	MLT	CHEMICAL/OIL TANKER	13,100	129	1
NARMADA SPIRIT	MLT	CRUDE OIL TANKER	159,199	274	1
NEAPOLIS	GRC	PRODUCT TANKER	74,543	228	3
NEDAS	GRC	PRODUCT TANKER	61,328	213	1
NEW ADVANCE	LBR	CRUDE OIL TANKER	105,670	239	1
NEW AWARD	LBR	PRODUCT TANKER	109,804	244	1
NEWLEAD COMPASSION	BMU	CRUDE OIL TANKER	69,869	229	1
NINA VICTORY	NIS	CHEMICAL/OIL TANKER	40,584	181	1
NISSOS KYTHNOS	GRC	CRUDE OIL TANKER	115,700	250	3
NOEMI	MHL	CRUDE OIL TANKER	64,999	228	3

NORD IMAGINATION	PAN	PRODUCT TANKER	48,006	180	1
NORD INNOVATION	PAN	PRODUCT TANKER	47,400	180	1
NORDIC JUPITER	MHL	CRUDE OIL TANKER	157,411	274	1
NORDIC MISTRAL	MHL	CRUDE OIL TANKER	164,236	274	1
NORTH SEA	SGP	CRUDE OIL TANKER	115,325	244	2
OCEAN LEO	LBR	PRODUCT TANKER	47,000	182	1
OMEGA KING	MHL	CRUDE OIL TANKER	74,999	228	3
OMEGA LADY SARAH	MHL	PRODUCT TANKER	71,498	228	2
OREGON VOYAGER	USA	CHEMICAL/OIL TANKER	45,671	189	24
ORPHEAS	LBR	CRUDE OIL TANKER	167,282	274	1
OVERSEAS ANACORTES	USA	PRODUCT TANKER	46,815	183	3
OVERSEAS BOSTON	USA	CHEMICAL/OIL TANKER	46,804	183	3
OVERSEAS CASCADE	USA	CHEMICAL/OIL TANKER	46,287	183	1
OVERSEAS GOLDMAR	MHL	PRODUCT TANKER	69,684	228	2
OVERSEAS JADEMAR	MHL	CRUDE OIL TANKER	69,697	228	5
OVERSEAS KYTHNOS	MHL	CHEMICAL/OIL TANKER	50,000	183	1
OVERSEAS LONG BEACH	USA	PRODUCT TANKER	46,812	183	9
OVERSEAS LOS ANGELES	USA	PRODUCT TANKER	46,817	183	9
OVERSEAS LUZON	MHL	PRODUCT TANKER	74,908	228	1
OVERSEAS MARTINEZ	USA	CHEMICAL/OIL TANKER	45,760	183	6
OVERSEAS MINDORO	MHL	PRODUCT TANKER	73,677	229	1
OVERSEAS NIKISKI	USA	PRODUCT TANKER	45,760	183	4
OVERSEAS PALAWAN	MHL	PRODUCT TANKER	73,634	229	1
OVERSEAS PEARLMAR	MHL	CRUDE OIL TANKER	69,250	219	2
OVERSEAS REYMAR	MHL	PRODUCT TANKER	69,636	219	5
OVERSEAS ROSEMAR	MHL	CRUDE OIL TANKER	70,000	32	1
OVERSEAS SAMAR	MHL	CHEMICAL/OIL TANKER	74,192	229	1
OVERSEAS SIFNOS	MHL	CHEMICAL/OIL TANKER	51,225	183	1
OVERSEAS SILVERMAR	MHL	PRODUCT TANKER	69,609	228	1
OVERSEAS TAMPA	USA	PRODUCT TANKER	46,815	183	8
OVERSEAS VISAYAS	MHL	PRODUCT TANKER	74,933	228	1

PACIFIC ALLIANCE	IOM	CRUDE OIL TANKER	105,941	244	2
PACIFIC GARNET	LBR	PRODUCT TANKER	47,879	180	1
PARAMOUNT HYDRA	IOM	CRUDE OIL TANKER	113,968	250	2
PARTAWATI	SGP	PRODUCT TANKER	21,280	149	1
PEGASUS	GRC	CRUDE OIL TANKER	158,267	274	1
PELICAN STATE	USA	CHEMICAL/OIL TANKER	48,599	183	1
PINE GALAXY	BHS	CHEMICAL/OIL TANKER	19,997	148	2
POLAR ADVENTURE	USA	CRUDE OIL TANKER	141,740	272	6
POLAR ENDEAVOUR	USA	CRUDE OIL TANKER	141,740	273	10
POLAR ENTERPRISE	USA	CRUDE OIL TANKER	141,740	273	2
POLAR RESOLUTION	USA	CRUDE OIL TANKER	140,320	273	9
PRIME EXPRESS	PAN	PRODUCT TANKER	45,800	180	1
PRINCIMAR JOY	MHL	CRUDE OIL TANKER	156,493	274	1
PRITA DEWI	SGP	CHEMICAL TANKER	19,998	148	1
PURWATI	SGP	CHEMICAL TANKER	19,995	148	1
PUZE	MHL	CHEMICAL/OIL TANKER	51,773	195	5
RIGA	MHL	PRODUCT TANKER	68,467	229	1
ROSEANNE	PAN	CHEMICAL TANKER	12,083	131	1
ROSS SEA	SGP	CRUDE OIL TANKER	114,491	244	1
ROYAL ORION	PAN	CHEMICAL/OIL TANKER	19,997	150	1
ROYAL STELLA	PAN	CHEMICAL TANKER	20,000	150	2
S/R AMERICAN PROGRESS	USA	PRODUCT TANKER	46,095	183	2
SANKO BREEZE	PAN	CRUDE OIL TANKER	105,721	239	3
SANKO INDEPENDENCE	LBR	LIQUID GAS CARRIER	26,466	174	1
SCF SAMOTLOR	LBR	CRUDE OIL TANKER	158,070	274	1
SEA BAY	HKG	PRODUCT TANKER	108,760	243	2
SEAMASTER	HKG	PRODUCT TANKER	109,266	243	2
SEASERVICE	HKG	CRUDE OIL TANKER	107,160	246	1
SEAVOYAGER	HKG	CRUDE OIL TANKER	109,085	243	1
SEVEN EXPRESS	PAN	PRODUCT TANKER	45,998	180	1
SICHEM MANILA	SGP	CHEMICAL/OIL TANKER	13,125	129	1

SICHEM OSPREY	MLT	CHEMICAL/OIL TANKER	25,432	170	1
SIERRA	USA	CRUDE OIL TANKER	124,777	264	16
SIRIUS VOYAGER	BHS	CRUDE OIL TANKER	156,382	276	40
SOUTH SEA	LBR	CRUDE OIL TANKER	149,393	274	1
SPRING LYRA	PAN	CHEMICAL TANKER	16,020	138	4
SPRING URSA	PAN	CHEMICAL TANKER	15,265	131	1
SPRUCE GALAXY	PAN	CHEMICAL/OIL TANKER	19,995	148	2
ST.JOHANNIS	HKG	CHEMICAL/OIL TANKER	51,271	183	8
STELLAR LILAC	PAN	CHEMICAL TANKER	12,560	128	3
STENA CONCERT	BMU	CHEMICAL TANKER	47,288	182	1
SUMMIT EUROPE	CYP	PRODUCT TANKER	74,997	228	1
SUNLIGHT EXPRESS	PAN	PRODUCT TANKER	45,800	180	1
TARANTELLA	LBR	CHEMICAL/OIL TANKER	46,764	183	1
TARGET	MLT	CRUDE OIL TANKER	115,804	250	2
TEESTA SPIRIT	BHS	PRODUCT TANKER	46,921	183	1
THEO T.	BHS	CRUDE OIL TANKER	73,021	219	2
TORM HELLERUP	PHL	PRODUCT TANKER	45,800	180	1
TORM PLATTE	DNK	CHEMICAL/OIL TANKER	46,959	183	1
VALENTINE	PAN	CHEMICAL TANKER	14,214	134	2
VALVERDE	ITA	PRODUCT TANKER	50,633	183	1
VINALINES GALAXY	VNM	CHEMICAL/OIL TANKER	50,530	183	2
VOIDOMATIS	LBR	PRODUCT TANKER	61,000	213	1
WASHINGTON VOYAGER	USA	PRODUCT TANKER	39,796	198	9
WAWASAN CELESTE	PAN	PRODUCT TANKER	45,700	180	1
WIDAWATI	SGP	PRODUCT TANKER	25,000	160	2
WILSKY	MLT	CRUDE OIL TANKER	164,772	274	1
WILUTAMA	HKG	CHEMICAL/OIL TANKER	25,000	160	2
WORLD HARMONY	LBR	CRUDE OIL TANKER	74,200	228	3
YASA BODRUM	TUR	CHEMICAL/OIL TANKER	50,100	183	1
YASA SCORPION	MHL	CRUDE OIL TANKER	158,555	274	1
YELENA	PAN	CHEMICAL/OIL TANKER	12,101	124	1

ZALIV AMERIKA	СҮР	CRUDE OIL TANKER	104,535	244	1
ZALIV AMURSKIY	CYP	CRUDE OIL TANKER	104,542	244	4
ZARUMA	PAN	CRUDE OIL TANKER	105,310	244	2

Recommendations for conducting Escort Training on San Francisco Bay

1.0 OVERVIEW

The members of the San Francisco Harbor Safety Committee recognize that for the Tug Escort System to perform as anticipated, all phases of its operation should be exercised. By training, pilots and tug operators will practice using the escort command language. They will also expand their knowledge of the capabilities and limitations of the various tugs employed in escorting operations, and how best to utilize that tug in an emergency. Further, the user of the service, the ship's crew, will also gain valuable knowledge that they can apply in other ports by observing and participating in these training exercises.

Each organization is encouraged to participate in this training opportunity and to internally document their exercises.

2.0 PURPOSE

To outline and define the process by which pilots, escort tug and ship crews can arrange for and participate in live escort training exercises. This process will enable training to be conducted under agreed upon conditions to promote the safety of all involved. This training process will allow opportunities for demonstration, practice and skill enhancement for emergency response maneuvers. Lessons learned and best practices developed during these training sessions should be shared between the participants.

3.0 SCOPE

These voluntary recommendations are for the use of all pilots and tug crews actively offering their services as escorts in the Bay. By extension, the users of the services, the escorted vessel crews will also be included in the scope of these recommendations.

4.0 **RESPONSIBILITIES AND AUTHORITIES**

The pilot, tug captain and ship master have the responsibility to evaluate prior to each training session if it is appropriate to conduct training under the current environmental conditions, which maneuvers are to be demonstrated, where the training will be conducted and at what speed. If all three parties cannot agree, the training will not proceed.

5.0 SCHEDULING EXERCISES

It is intended that these training exercises may be conducted when weather conditions and / or vessel scheduling allows. It is expected that the pilot will initiate the request to conduct these exercises, however the shipmaster or escort tug captain may initiate them. Each may decline to participate with no negative consequences should he or she feel that it is inappropriate.

Tug escort captains and / or mates qualified to conduct escort operations are to be preauthorized by their companies to make the decision on board if requested by the pilot.

Prior to agreeing to conduct the training, the participants should consider weather, sea conditions, the degree of training of the participants, the speed of the escorted vessel and the maneuvers to be executed. Only when all parties agree that it is appropriate will the training proceed. Each party may also halt the training exercise if he or she becomes concerned for any reason.

6.0 TRAINING EXERCISES

When a training exercise is agreed to, the pilot and tug operator should carefully discuss the maneuvers that they want to demonstrate. The tug operator should be the one to specify at what speeds he will be comfortable performing the maneuvers in question based on his personal experience level and training. Escort training sessions should be logged.

7.0 ESCORT LANGUAGE

In order to work towards a stronger bridge team, this training will encourage all participants to use a standardized tug command language.¹

8.0 CROSS DECK TRAINING

The San Francisco Bar Pilots, the ChevronTexaco Pilots and the independent pilots of the Bay recognize the benefit of understanding how the tug crews operate their vessels during an escort. Towards that end the pilots will be encouraged to ride on board a tug during an escort.

Tug crews are also encouraged to ride on board a tanker during an escort whenever possible. While it may be more difficult to arrange, training exercises should also be open to interested ship crews also.

¹ The US Coast Guard NAVSAC Committee has endorsed a command language, and it is in use in many ports around the United States.

9.0 TRIALS / TRAINING INFORMATION

The participants recognize that less than perfect performance may occur as part of this training process. Further, as new employees are brought on board this learning-by-doing process will continue into the future.

The participants shall not use the outcome of other organization's exercises as part of their own commercial activities. It will be acceptable to discuss one's own organization's training activities as part of your advertising if desired.

San Francisco Bay PORTS

Appendix L

San Francisco Bay Area Bridges: Characteristics and Construction Projects

Significant bridge projects presently underway in the San Francisco Bay Area:

• The replacement of the east section of the San Francisco-Oakland Bay Bridge between YBI and Oakland is in progress. The reasonable needs of navigation are being met during the work. Updates continue via Local Notices to Mariners and Broadcast Notices to Mariners. The estimated completion date for the project, including removal of the replaced bridge, is 2018.

• Caltrans is replacing the center pier fendering system of the I-80 Highway Bridge at the entrance to Carquinez Strait. The project will include crane barges moored to the center pier with minimal impacts to navigation. The project is scheduled to continue through May 2013.

• Caltrans seismic retrofitting of the Antioch Hwy Bridge and the Dumbarton Hwy Bridge continues. The Eleventh Coast Guard District is coordinating with the bridge owner and other agencies to ensure the proposed work will not have negative impacts on the reasonable needs of waterway traffic, during or after the proposed work. Navigational impacts have been minimal.

• Caltrans is proposing to replace the Hwy 12 Drawbridge across the Sacramento River at Rio Vista with a mid level drawbridge or high level fixed bridge. They are considering 4 alignment alternatives. With the assistance of the SF/Sacramento Corps of Engineers, SF Bar Pilots, ship rides & chart reviews, he Coast Guard has provided navigational clearance requirements for each alignment to ensure the proposed replacement bridge will meet the existing and future navigational needs for the largest vessels on the waterway.

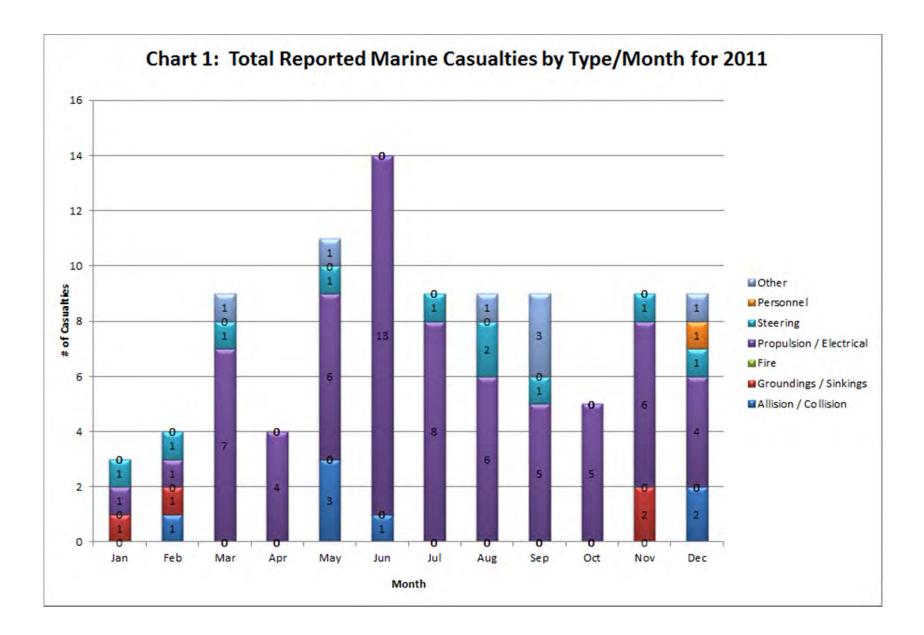
• San Mateo Transit District is continuing their proposal to replace the drawspan of the Dumbarton railroad drawbridge and resume usage of the bridge for commuter and freight rail traffic, sometime after 2013. The Eleventh Coast Guard District is coordinating with the bridge owner and other agencies to ensure the proposed work will not have negative impacts on the reasonable needs of waterway traffic, during or after the proposed work. A Coast Guard Bridge Permit, pursuant to the General Bridge Act of 1946, will be required for the work, and is subject to the provisions of the National Environmental Policy Act.

San Francisco Bay Area Bridges Encountered By Ocean Going Vessels

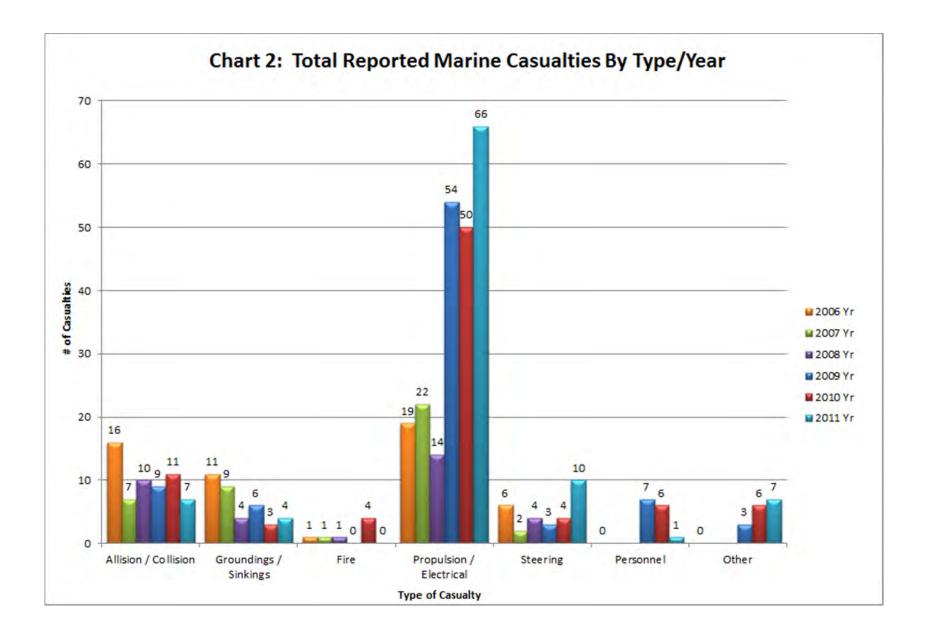
(Fo	or up to date clearand	ce information refer to the	he latest NOAA cl	nart or the USCG Bridge Section)
				CLEARANCES
BRID	GE NAME AND	LOCATION	TYPE	Horz/Vert MLLW-MHW
	Golden Gate B		SUS	4028/238-232
	San Francisco E	-	505	1020/200 202
2.		•	SUS	
2.		Bay, Westerly Reach		
	Span A-B,	Pier A	-	2229/180-174
	~p***** 2,	Pier B		229/223-217
	Span B-C,	Pier B		1072/224-218
	Span 2 C,	Pier C		1072/227-221
	Span C-D,	Pier C		1079/226-220
	spuil e D,	Pier D		1079/224-218
	Span D-E,	Pier D		2210/224-218
	Spuil D L,	Pier E		2210/181-175
	Span E-YB Isl,		F	870/176-170
3	Richmond-San		F	010/110 110
5.	San Francisco E		1	
	Main Channel,	•		1000/190-185
	Wall Chamber,	Left and Right Spa	n	480/173-168
	East Channel,	Center Span	•11	970/140-135
4.		1	F	270/110 122
••	Carquinez Strai	• •	1	
	Upstream Bridg			
	South Channel		South Pier	998/141-135
	South Channel		North Pier	998/151-145
	North Channel	-	South Pier	1000/152-146
	North Channel	-	North Pier	1000/157-151
		-		a suspension bridge that
				nces provided by the adjacent
			-	on the upstream bridge.
5				idge F
5.	Benicia-Martine		10uiii) 11wy Di	440/141-135
6		nez, I-680N (upstrea	am) Hwy Brid o	
0.		· · · ·		traffic) bridge exceeds vertical
				the adjacent railroad
		the downstream I-6		
7	-	nez, Union Pacific l	-	V/L
7.	Benicia-Martine		Raised	291/140-135
			Lowered	291/75-70
7.	Antioch		F	271115 10
, •		San Joaquin River	×	400/142-138
				100/112 100

San Francisco Bay Area Bridges Encountered By Ocean Going Vessels

(For up to date clearance information refer to the latest NOAA chart or the USCG Bridge Section)

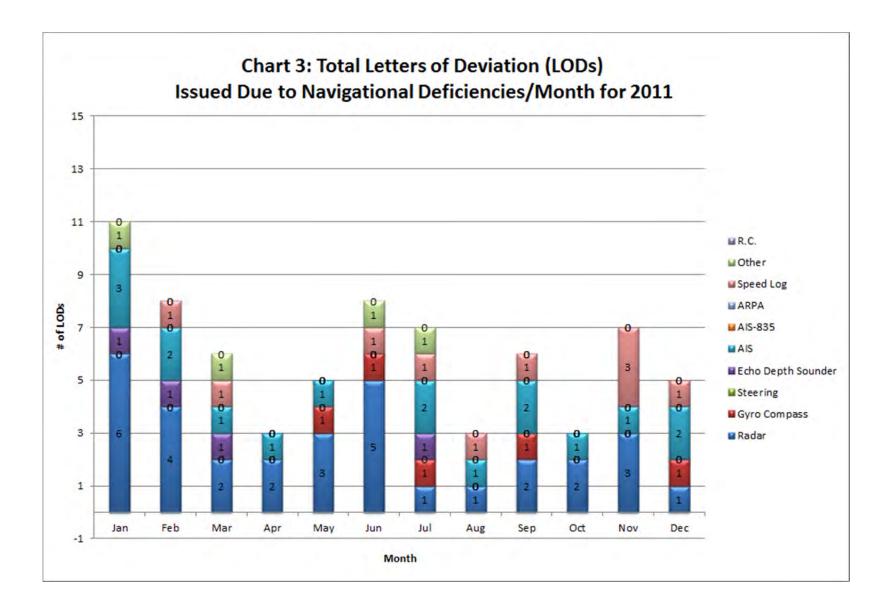

				CLEARANCES
BRIDO	<u>GE NAME AND</u>	LOCATION	TYPE	Horz/Vert MLLW-MHW
8.	Golden Gate B	-	SUS	4028/238-232
	San Francisco E	Bay		
9.	San Francisco-	Oakland	SUS	
		Bay, Westerly Reach		
	Span A-B,	Pier A		2229/180-174
		Pier B		229/223-217
	Span B-C,	Pier B		1072/224-218
		Pier C		1072/227-221
	Span C-D,	Pier C		1079/226-220
		Pier D		1079/224-218
	Span D-E,	Pier D		2210/224-218
		Pier E		2210/181-175
	Span E-YB Isl,	Pier E	Fixed	870/176-170
10.	Richmond-San	Rafael	Fixed	
	San Francisco E	Bay		
	Main Channel,	Center Span		1000/190-185
		Left and Right Span		480/173-168
	East Channel,	Center Span		970/140-135
11.	Carquinez		Fixed	
	Carquinez Strai	t, Vallejo		
	Upstream Bridg	je:		
	South (left) Spa	n, South Pier		998/141-135
	South (left) Spa	n, North Pier		998/151-145
	North (right) Sp	oan, South Pier		1000/152-146
	North (right) Sp	oan, North Pier		1000/157-151
	Downstream Br	idge:		
	South (left) Spa	n, South Pier		1030/140-134
	South (left) Spa	n, North Pier		1030/150-144
	North (right) Sp	an, South Pier		1030/153-147
	North (right) Sp	an, North Pier		1030/158-152
12.	Martinez, High	way Bridge	Fixed	
	Martinez/Benic	•		440/141-135
13	Martinez, Unic	on Pacific RR Bridge	V/L	
10.	Martinez/Benic	0	Raised	291/140-135
		,	Lowered	291/75-70
7.	Antioch		Fixed	
/•		San Joaquin River	11120	400/142-138
	Annoch, CA –	San Juayuni Kivei		400/142-130

Sector San Francisco - Port Safety Statistics: 2011

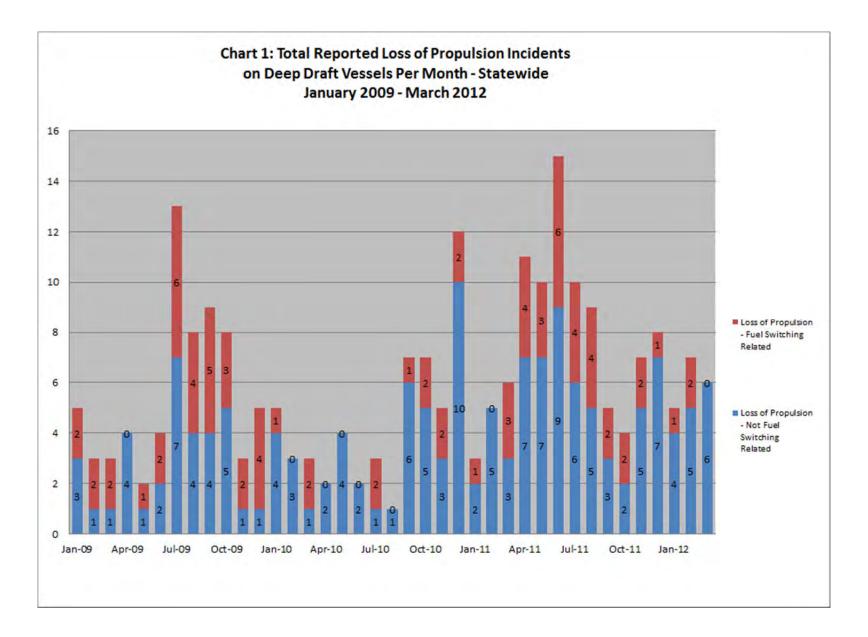

Total Reported Marine	casual		<u> </u>	-				-	_			_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Avg per month
Allision / Collision	0	1	0	0	3	1	0	0	0	0	0	2	7	1
Groundings / Sinkings	1	1	0	0	0	0	0	0	0	0	2	0	4	0
Fire	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Propulsion / Electrical	1	1	7	4	6	13	8	6	5	5	6	4	66	6
Steering	1	1	1	0	1	0	1	2	1	0	1	1	10	1
Personnel	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Other	0	0	1	0	1	0	0	1	3	0	0	1	7	1
Total	3	4	9	4	11	14	9	9	9	5	9	9	95	8

Total Reported Marin	e Casual	ties By 1	ype/Yea	r - Chart	2			
	2006 Yr	2007 Yr	2008 Yr	2009 Yr	2010 Yr	2011 Yr	Total	Avg
Allision / Collision	16	7	10	9	11	7	60	10
Groundings / Sinkings	11	9	4	6	3	4	37	6
Fire	1	1	1	0	4	0	7	1
Propulsion / Electrical	19	22	14	54	50	66	225	38
Steering	6	2	4	3	4	10	29	5
Personnel	0	0	0	7	6	1	14	2
Other	0	0	0	3	6	7	16	3

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Avg per month
Radar	6	4	2	2	3	5	1	1	2	2	3	1	32	2.7
Gyro Compass	0	0	0	0	1	1	1	0	1	0	0	1	5	0.4
Steering	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Echo Depth Sounder	1	1	1	0	0	0	1	0	0	0	0	0	4	0.3
AIS	3	2	1	1	1	0	2	1	2	1	1	2	17	1.4
AIS-835	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ARPA	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Speed Log	0	1	1	0	0	1	1	1	1	0	3	1	10	0.8
Other	1	0	1	0	0	1	1	0	0	0	0	0	4	0.3
R.C.	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Total	11	8	6	3	5	8	7	3	6	3	7	5	72	6.0
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Avg per month
Reported Navigation														
Rule 9 Violations	0	0	1	0	0	0	1	3	0	0	0	1	6	0.92



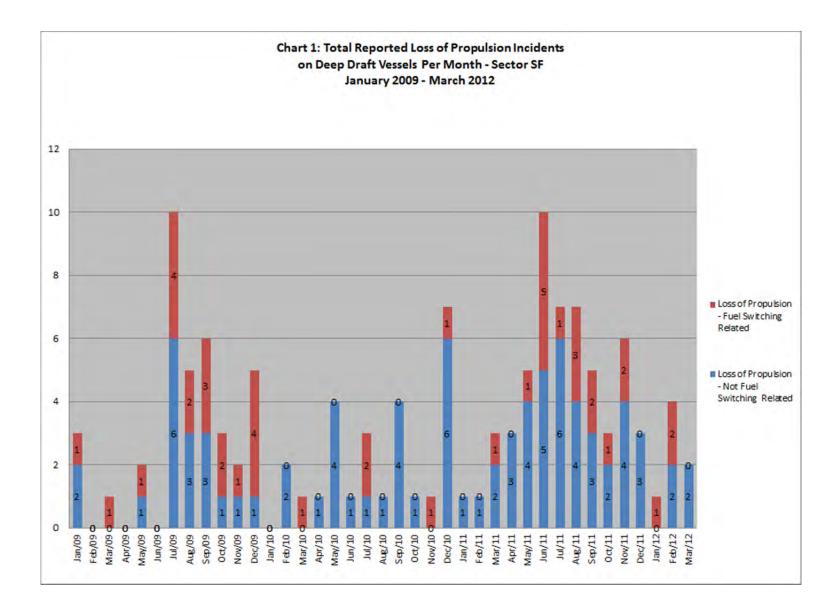
203 SF HSC Plan approved June 14, 2012


204 SF HSC Plan approved June 14, 2012

Appendix M

DISTRICT 11 LOSS OF PROPULSION INCIDENTS ON DEEP DRAFT VESSELS - Statewide										
	Monthly	/ Totals in 200	9 - 2012							
	Loss of	Loss of								
	Propulsion -	Propulsion -	Total Loss of	Safety						
	Not Fuel	Fuel	Propulsion	Exemptions						
	Switching Related	Switching Related	Incidents	Used						
Jan-09	3	2	5							
Feb-09	1	2	3							
Mar-09	1	2	3							
Apr-09	4	0	4							
May-09	4	1	2							
-			4							
Jun-09 Jul-09	2	2	· ·	4						
		-	13	1						
Aug-09	4	4	8	2						
Sep-09	4	5	9	1						
Oct-09	5	3	8	1						
Nov-09	1	2	3	2						
Dec-09	1	4	5	4						
Jan-10	4	1	5	5						
Feb-10	3	0	3	2						
Mar-10	1	2	3	5						
Apr-10	2	0	2	2						
May-10	4	0	4	2						
Jun-10	2	0	2	1						
Jul-10	1	2	3	1						
Aug-10	1	0	1	1						
Sep-10	6	1	7	0						
Oct-10	5	2	7	4						
Nov-10	3	2	5	4						
Dec-10	10	2	12	2						
Jan-11	2	1	3	1						
Feb-11	5	0	5	2						
Mar-11	3	3	6	5						
Apr-11	7	4	11	0						
May-11	7	3	10	6						
Jun-11	9	6	15	1						
Jul-11	6	4	10	2						
Aug-11	5	4	9	1						
Sep-11	3	2	5	2						
Oct-11	2	2	4	0						
Nov-11	5	2	7	1						
Dec-11	7	1	8	0						
Jan-12	4	1	5	0						
Feb-12	5	2	7	0						
Mar-12	6	0	6	1						
Totals	152	80	232	62						

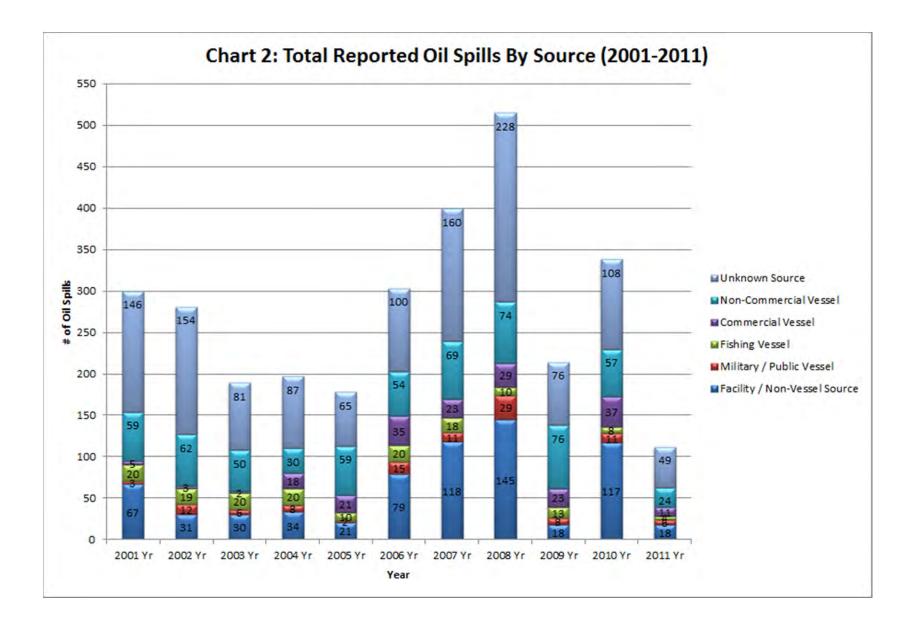
Appendix M

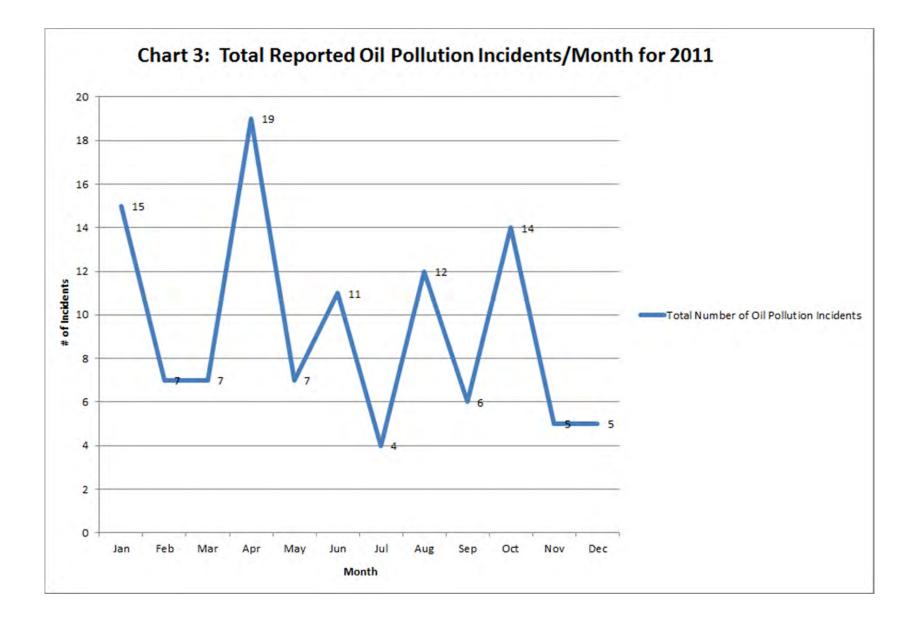


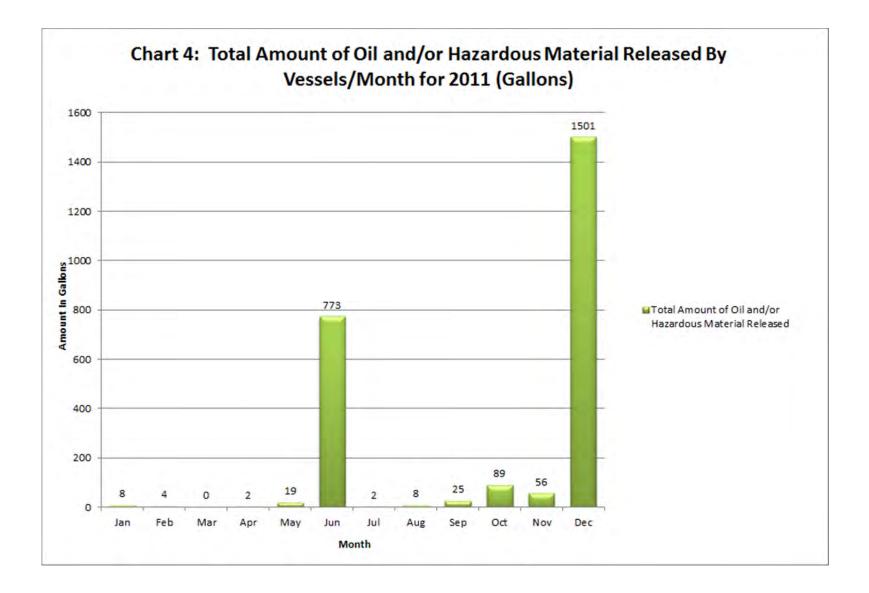
207 SF HSC Plan approved June 14, 2012

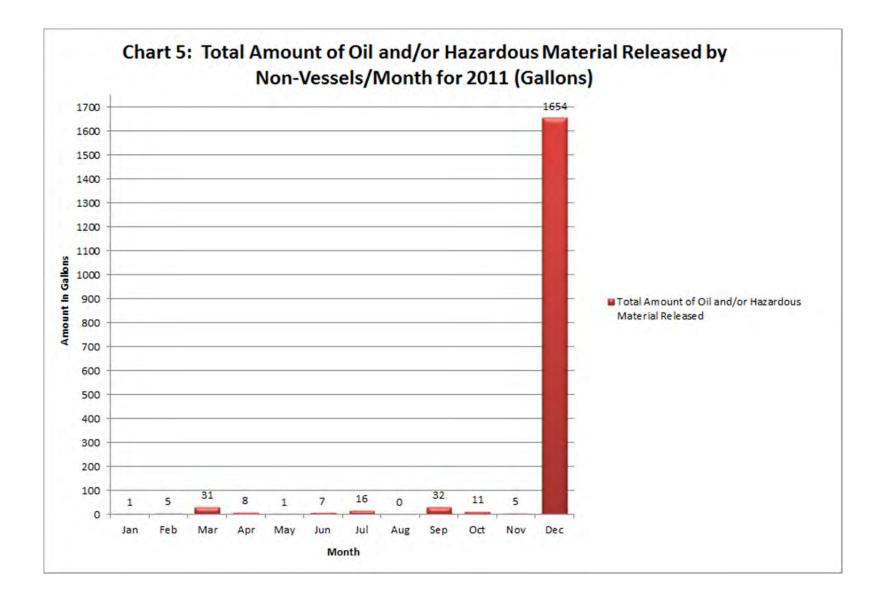
REPORTED LOSS OF PROPULSION INCIDENTS ON DEEP DRAFT VESSELS - SECTOR SF

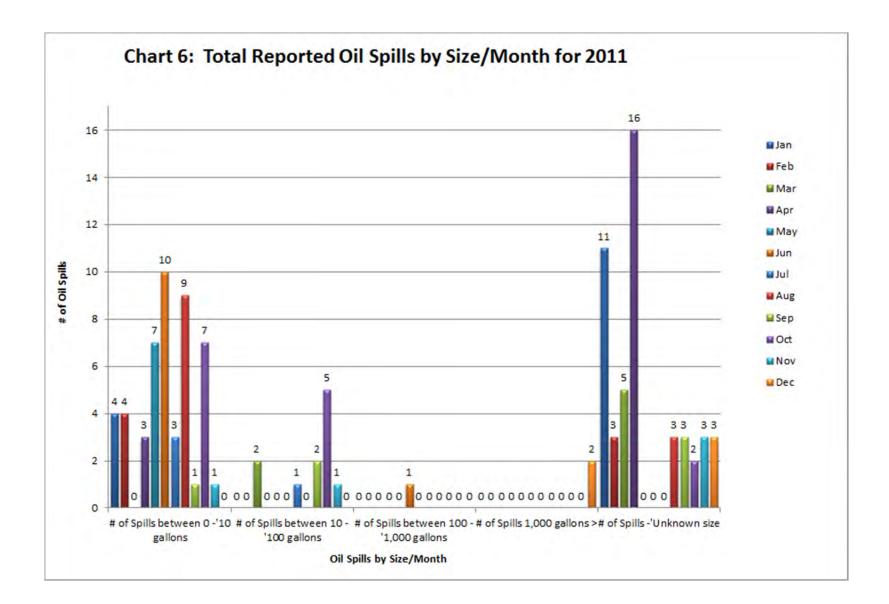
	Monthly	Totals in 2009	- 2012	
	Loss of	Loss of		
	Propulsion -	Propulsion -	Total Loss	Safety
	Not Fuel	Fuel	of	Exemptions
	Switching	Switching	Propulsion	Used
	Related	Related	Incidents	
Jan-09	2	1	3	
Feb-09	0	0	0	
Mar-09	0	1	1	
Apr-09	0	0	0	
May-09	1	1	2	
Jun-09	0	0	0	
Jul-09	6	4	10	1
Aug-09	3	2	5	2
Sep-09	3	3	6	1
Oct-09	1	2	3	1
Nov-09	1	1	2	2
Dec-09	1	4	5	4
Jan-10	0	0	0	5
Feb-10	2	0	2	2
Mar-10	0	1	1	5
Apr-10	1	0	1	2
May-10	4	0	4	2
Jun-10	1	0	1	1
Jul-10	1	2	3	1
Aug-10	1	0	1	1
Sep-10 Oct-10	4	0	4	0 4
Nov-10	0	1	1	4
Dec-10	6	1	7	2
Jan-11	1	0	1	1
Feb-11	1	0	1	2
Mar-11	2	1	3	5
Apr-11	3	0	3	0
May-11	4	1	5	6
Jun-11	5	5	10	1
Jul-11	6	1	7	2
Aug-11	4	3	7	1
Sep-11	3	2	5	2
Oct-11	2	1	3	0
Nov-11	4	2	6	1
Dec-11	3	0	3	0
Jan-12	0	1	1	0
Feb-12	2	2	4	0
Mar-12	2	0	2	1
Totals	81	43	124	62

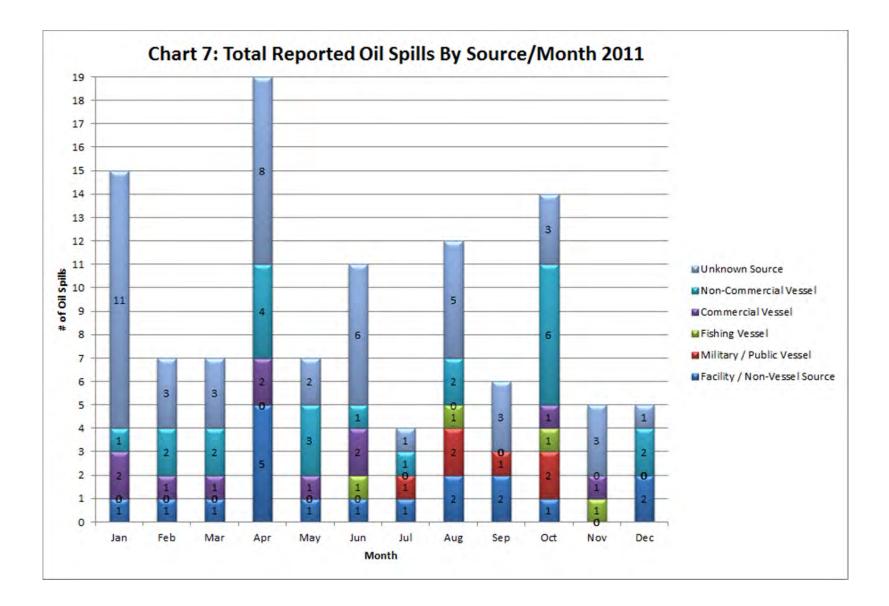

Appendix M


Sector	San Fr	ancisc	o Pollu	tion St	atistics	Janua	ary 1, 20)11 to [Decemb	oer 31,	2011			
Total Reported Oil Pollution	Incidents	for Sec	tor SF/Y	r - Chart	1	_	_				_	_		
	2001 Yr	2002 Yr	2003 Yr	2004 Yr	2005 Yr	2006 Yr	2007 Yr	2008 Yr	2009 Yr	2010 Yr	2011 Yr	Total	Avg	
Total Number of Oil Pollution														
Incidents	303	240	192	196	200	297	403	502	355	338	115	3141	286	
Total Reported Oil Spills By	Source/Y	r - Chart	2											1
	-	2002 Yr		2004 Yr	2005 Yr	2006 Yr	2007 Yr	2008 Yr	2009 Yr	2010 Yr	2011 Yr	Total	Avg	
Facility / Non-Vessel Source	67	31	30	34	21	79	118	145	18	117	18	678	61.64	
Military / Public Vessel	3	12	6	8	2	15	11	29	8	11	6	111	10.09	
Fishing Vessel	20	19	20	20	10	20	18	10	13	8	4	162	14.73	
Commercial Vessel	5	3	2	18	21	35	23	29	23	37	11	207	18.82	
Non-Commercial Vessel	59	62	50	30	59	54	69	74	76	57	24	614	55.82	
Jnknown Source	146	154	81	87	65	100	160	228	76	108	49	1254	114.00	
Total Reported Oil Pollution	1			1	1									
Total Number of Oil Pollution	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	A
Incidents	15	7	7	19	7	11	4	12	6	14	5	5	112	9
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	A
Fotal Amount of Oil Discharged and/or Hazardous Material														
Released (gallons)	9	9	31	10	20	780	18	8	57	100	61	3155	4258	3
Total Amount of Oil and/or H	azardou	: Matoria	I Roload	od by V	ossols/M	onth for	2011 C	hart /						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	A
Total Amount of Oil and/or														f
Hazardous Material Released	8	4	0	2	19	773	2	8	25	<mark>8</mark> 9	56	1501	2487	2
Fotal Amount of Oil and/or H	azardou	s Materia	I Releas	sed by N	on-Vesse	el Source	es/Month	for 2011	- Chart !	5				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Α
Fotal Amount of Oil and/or Hazardous Material Released	1	5	31	8	1	7	16	0	32	11	5	1654	1771	1


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Avg
# of Spills between 0 - 10														
gallons	4	4	0	3	7	10	3	9	1	7	1	0	49	4.1
# of Spills between 10 - 100														
gallons	0	0	2	0	0	0	1	0	2	5	1	0	11	0.9
# of Spills between 100 - 1,000														
gallons	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
# of Spills 1,000 gallons >	0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
# of Spills - Unknown size	11	3	5	16	0	0	0	3	3	2	3	3	49	4.1
Total Reported Oil Spills By S	Source/N	lonth for	2011 - C	hart 7										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Avg
Facility / Non-Vessel Source	1	1	1	5	1	1	1	2	2	1	0	2	18	1.5
Military / Public Vessel	0	0	0	0	0	0	1	2	1	2	0	0	6	0.5
Military / Public Vessel Fishing Vessel	0	0	0	0	0	0 1	1 0	2 1	1 0	2	0 1	0	6 4	0.5
		-	-	-	-			2 1 0	•	-	-	~	-	0.3
Fishing Vessel	0	-	0	0	-	1	0	1	0	1	1	Ő	4	0.3
Fishing Vessel Commercial Vessel	0 2	0	0	0	0	1 2	0	1 0	0	1	1	0	4	_
Fishing Vessel Commercial Vessel Non-Commercial Vessel	0 2 1	0 1 2	0 1 2	0 2 4	0 1 3	1 2 1	0 0 1	1 0 2	0	1 1 6	1 1 0	0	4 11 24	0.3 0.9 2.0
Fishing Vessel Commercial Vessel Non-Commercial Vessel	0 2 1	0 1 2	0 1 2	0 2 4	0 1 3	1 2 1	0 0 1	1 0 2	0	1 1 6	1 1 0	0	4 11 24	0.3 0.9 2.0
Fishing Vessel Commercial Vessel Non-Commercial Vessel Unknown Source	0 2 1	0 1 2	0 1 2	0 2 4	0 1 3	1 2 1	0 0 1	1 0 2	0	1 1 6	1 1 0	0	4 11 24	0.3 0.9 2.0
Fishing Vessel Commercial Vessel Non-Commercial Vessel Unknown Source Penalty Action:	0 2 1 11	0 1 2 3	0 1 2 3	0 2 4 8	0 1 3 2	1 2 1 6	0 0 1 1	1 0 2 5	0	1 1 6 3	1 1 0 3	0 0 2 1	4 11 24	0.3 0.9 2.0 4.1






213 SF HSC Plan approved June 14, 2012

CALIFORNIA STATE LANDS COMMISSION SAN FRANCISCO REGION Waterborne Petroleum Cargo Statistics

Product	Load (in barrels)	Discharge (in barrels)
Additives - Alkylate	814,000	1,776,255
Additives - Naphtha	1,378,600	189,400
Additives - Other	424,212	497,650
Additives - Ethanol	2,066,500	459,500
Additives - PenHex	0	0
Additives – Reformate	662,000	160,000
Additives – Toulene	0	30,000
Crude – ANS	0	26,753,000
Crude – Import	558,000	116,989,182
Crude – Other	503,000	1,234,000
Cutter Stock	298,975	222,000
Diesel	17,008,614	3,924,500
Fuel Oil	17,126,996	10,410,348
Gasoline	28,161,376	11,307,800
Jet Fuel	10,576,300	3,617,017
Light Cycle Oil	3,379,000	22,170,870
Lube Oil	4,354,665	267,889
MDO	2,800	0
Other	716,425	250,590
Totals:	88,031,463	200,260,001

Total # of barrels: 288,291,464

RECOMMENDATIONS YET TO BE IMPLEMENTED

I. Geographical Boundaries No current recommendation.

II. General Weather, Tides and Currents

1. The Harbor Safety Committee supports efforts to adequately fund NOAA maritime functions. The Committee recommends that NOAA update tide and current data using the latest technology available and publish the water level and current atlases on an expeditious basis.

2. The Harbor Safety Committee urges that the OSPR Administrator continue to support PORTS as a high priority and that OSPR continue to seek and allocate funds to maintain the system. The Committee recommends that the Marine Exchange of the San Francisco Bay Region continue to operate, maintain and support the uses of the PORTS program.

3. The Harbor Safety Committee recommends that a statewide uniform system of PORTS, certified by NOAA, be established in California waters. PORTS should be permanently financed by the State of California and/or NOAA, as there is broad public benefit in terms of marine safety, protecting the environment, use by recreational boaters and by academia, and preventing oil spills in California waters. Safety of navigation in our harbors is highly dependent upon real time tidal, current and wind information. OSPR, as an agency, should continue its oversight role.

III. Aids to Navigation No current recommendation.

IV. Anchorages No current recommendation.

V. Surveys, Charts and Dredging

1. The Committee continues to encourage facility owners/operators to conduct annual condition surveys of depths alongside and at the head of their facilities. The surveys should be forwarded to NOAA for application to the nautical charts.

2. The Committee continues to support the spirit of cooperation of the Corps of Engineers (COE) in providing timely up-to-date surveys of deep-water navigation channels, with highest priority on areas where shoaling has taken place, and timely dissemination of that information to the United States Coast Guard (USCG), pilots and the maritime community.

3. The Committee continues to support NOAA's timely updating of charts to reflect survey information from NOAA, COE and independent sources, frequently publishing data on channel depths in areas heavily trafficked by deep draft vessels, oil tankers and barges, and quickly alerting the USCG, pilots and the maritime community.

VI. Contingency Routing

1. The Committee continues to support the high degree of cooperation and consultation between pilots, the Coast Guard, the COE, port authorities and all other appropriate agencies and contractors, from the project planning stage through the construction stage of projects that may impact safe navigation in the Bay. The planning stage should include an evaluation of various alternatives to ensure harbor safety.

2. The Committee continues to request that Caltrans, railroads, etc., provide notice of work that would temporarily or permanently reduce bridge clearances as far in advance as possible through the Local Notice to Mariners, at a minimum, to assure that vessels are alerted to these hazards.

VII. Vessel Speed and Traffic Patterns

1. As larger and deeper draft vessels enter San Francisco Bay en route to the Port of Oakland due to the -50 foot deepening project, it is recommended that the Navigation Work Group of the Harbor Safety Committee (HSC) examine the current traffic scheme in the Bay and make recommendations to the Coast Guard for any changes in the current traffic schemes.

2. It is recommended that the Navigation Work Group (or a special group formed for this purpose) examine the Coast Guard's marine casualty statistics and their monthly reports of Significant Port Safety and Security cases to determine if there are trends or issues that should be brought to the HSC's attention for further consideration or action. A summary shall be included in the Annual Report to the Harbor Safety Committee.

VIII. Accidents and Near-Accidents No current recommendation.

IX. Communication No current recommendation.

X. Bridges

1. The Harbor Safety Committee continues to recommend that Caltrans, the Golden Gate Bridge and other owners and bridge operators install energy-absorbing fendering, instead of wooden or plastic fendering as bridges are repaired, retrofitted or in new construction.

XI. Small Passenger Vessels - Ferries No current recommendation.

XII. Small Vessels

1. Representatives of the Harbor Safety Committee should continue to make efforts to meet with representatives of the San Francisco Boardsailing Association, kayak, outrigger and canoe groups to promote safer navigation in the Bay by discussing such issues as race schedules and locations (if applicable); Rule 9 requirements; characteristics of large vessels, fast ferries, and tug/barge operations, and possible education efforts such as posting signs at areas frequented by large numbers of boardsailors or paddlesports enthusiasts to warn of vessel traffic dangers.

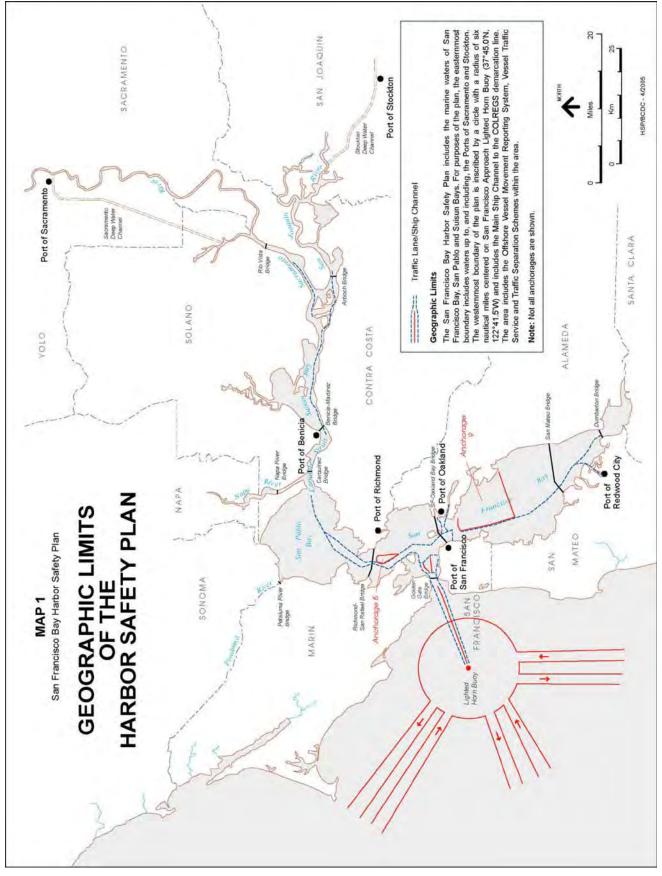
Other possible efforts include:

- Cooperate with the Coast Guard Auxiliary, U.S. Power Squadrons and other educational organizations to emphasize boater safety education and to disseminate boater safety materials to recreational boaters.
- Target boat rental establishments for education of inexperienced boaters.
- Target marinas and boat ramps for education outreach.

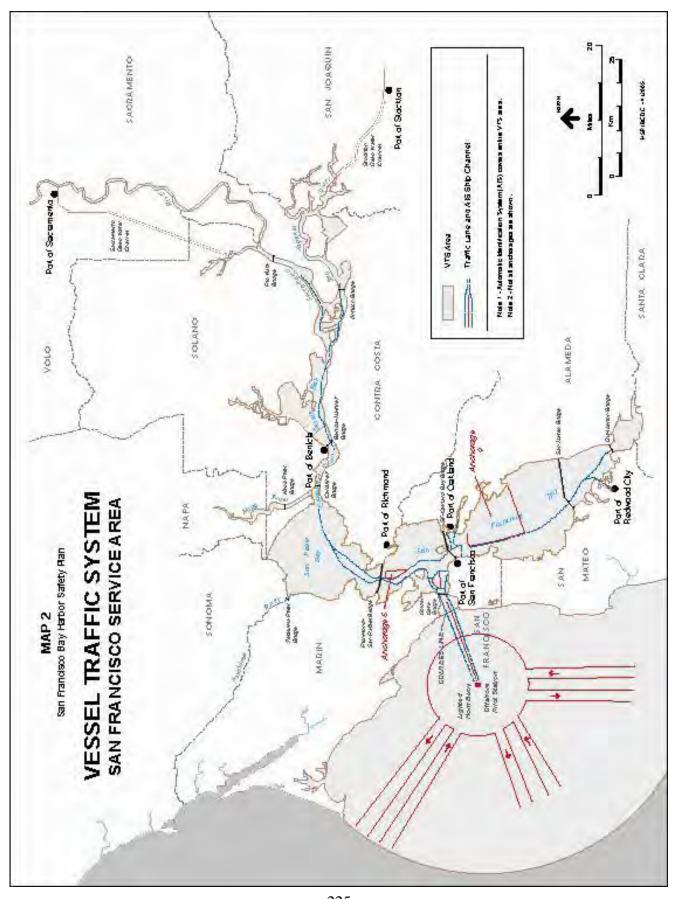
XIII. Vessel Traffic Service No current recommendation.

XIV. Tug Escort/Assist for Tank Vessels

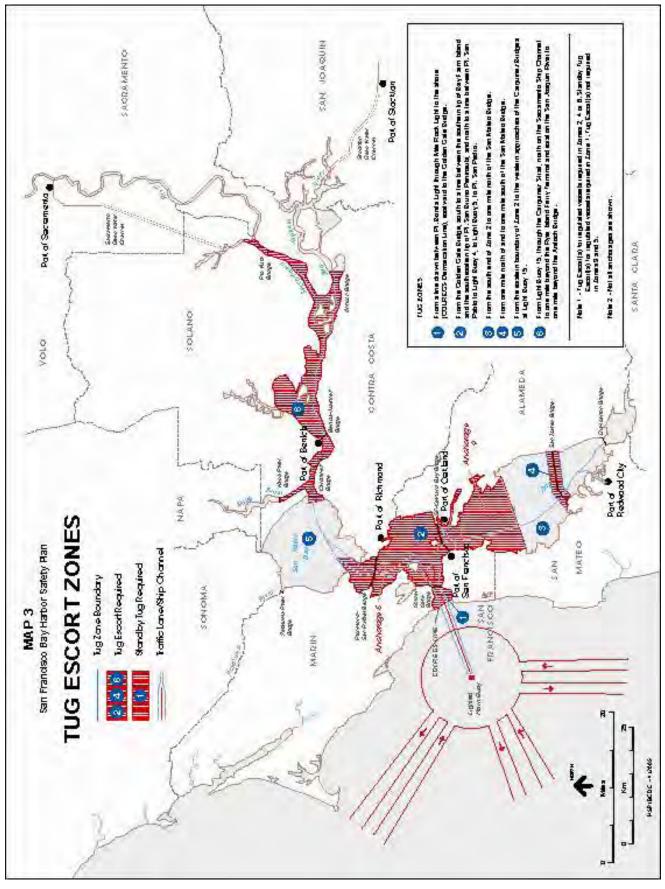
1. The HSC encourages the maritime industry to provide simulator training for tug personnel with pilot participation for emergency tug operations, based on local conditions. The training would improve communication between pilots and tug masters, offer in-house training to tug industry personnel, and provide valuable "lessons learned" for emergency situations in a controlled environment.


XV. Pilotage

1. Urge the Board of Pilot Commissioners, as a near-term priority, to work with the San Francisco Bar Pilots to incorporate in the Pilot training program enhanced training in advanced electronic navigation systems, providing exposure to a greater number of systems and variety of presentations.


2. Support adoption by the Board of Pilot Commissioners of a regulation to require that pilots licensed by the Pilot Commission be equipped with, and trained in the use of, portable electronic navigation equipment, commonly known as Portable Pilot Units ("PPUs"). The regulation should require that pilots be equipped with PPUs at all times while piloting except when the pilot deems that embarking on or disembarking from a vessel while carrying a PPU may present an unacceptable safety hazard to the pilot or when circumstances would prevent its use.

Such PPUs shall, at a minimum, have the following capabilities:


- (a) Displaying approved electronic navigation charts (ENCs) issued by the cognizant U.S. government authority;
- (b) Displaying the vessel's position and heading on such ENCs to the accuracy required by the International Maritime Organization (IMO) for Automatic Identification Systems (AIS); and
- (c) Displaying other navigational information as provided through the vessel's AIS pilot plug.
- **XVI.** Underkeel Clearance No current recommendation.
- **XVII. Economic and Environmental Impacts** No current recommendation.
- **XVIII. Plan Enforcement** No current recommendation.
- XIX. Substandard Vessel Inspection Program No current recommendation.

224 SF HSC Plan approved June 14, 2012

225 SF HSC Plan approved June 14, 2012

226 SF HSC Plan approved June 14, 2012